
2 CROSSTALK The Journal of Defense Software Engineering October 1998

Letter to the Editor

From the Publisher

Elizabeth Starrett’s article, “Measure-
ment 101,” CROSSTALK, August 1998,
was interesting and well written, but it
left out a critical point. Metrics based
on “source lines of code” move back-
ward when comparing software appli-
cations written in different program-
ming languages. The version in the
low-level language will look better than
the version in the high-level language.

In an article aimed at metrics nov-
ices, it is very important to point out

some of the known hazards of software
metrics. The fact that lines of code
can’t be used to measure economic
productivity is definitely a known
hazard that should be stressed.

In a comparative study of 10 ver-
sions of the same period using 10
different programming languages (Ada
83, Ada95, C, C++, Objective C, PL/
I, Assembler, CHILL, Pascal, and
Smalltalk), the lines of code metric
failed to show either the highest pro-

ductivity or best quality. Overall, the
lowest cost and fewest defects were
found in Smalltalk and Ada95, but the
lines of code metric favored assembler.
Function points correctly identified
Smalltalk and Ada95 as being superior,
but lines of code failed to do this.

Capers Jones
Software Productivity Research

Software developers
often view software as
a stand-alone entity,
rather than as a piece
of a larger system that
includes hardware and
users. This can lead to

many problems in system development.
However, this problem can affect other
people in the systems development
loop, as demonstrated by the following
tongue-in-cheek E-mail exchange:

Project X team lead: To the senior
management team: Since last week’s update, System
X’s hardware has remained on schedule, but the
software problems are looking even more serious.
We’re averaging nearly an error per function point
on the System X software, and we now project that
the software is 18 weeks behind schedule, plus it’s
already $220,000 over budget with an additional
$27,000-per-week burn rate. We’re still waiting for
your input on these and the other software prob-
lems we’ve been telling you about.

Senior management: We’re glad the
hardware is on schedule. Please stop bothering us
with updates on software glitches. Just do whatever
it takes to ensure System X meets the delivery
schedule in eight weeks.

Project X team lead: Okay, we won’t
bring up software problems with you anymore. By
the way, we have refigured the system schedule: The
system will be delivered at least 18 weeks late, and

the system is already $220,000 over budget and
counting. Please comment.

Senior management: We need an
emergency meeting right away. Why didn’t you tell us
earlier that the system was in trouble?

Efforts to implement better prac-
tices and more mature processes have
been going on for years now in the
Department of Defense (DoD). The
Capability Maturity Model (CMM) for
Software was developed to “provide
software organizations with guidance
on how to gain control of their pro-
cesses for developing and maintaining
software and how to evolve toward a
culture of software engineering and
management excellence” (CMM for
Software, Version 1.1, CMU/SEI-93-
TR-24, p. 5). In the DoD, it has been
the model of choice for software and
has improved cost, quality, and sched-
ule performance in organizations where
it has been skillfully applied.

Unfortunately, most software organi-
zations still have a long way to go be-
fore they will be mature and disciplined
enough to avoid the self-inflicted prob-
lems that are wrongly assumed to be a
natural part of software development.
The same applies to the problems
caused by the widespread lack of disci-
pline in systems development.

Many improvement efforts are now
ongoing in the various engineering
disciplines related to systems develop-
ment. Early indicators from organiza-
tions that use the resulting models
reveal that the application of the prac-
tices defined in these models leads to
more discipline, which results in im-
proved schedule, cost, and quality.

Each of the past and present models
and standards attempts to move system
development toward more disciplined,
mature behavior. To help you keep
track of all these developments, Randall
Wright’s article (p. 7) eliminates some
of the confusion regarding different
systems engineering models that have
evolved since process improvement
efforts began.

CROSSTALK has long discussed pro-
cesses and process models for software.
Most of the articles in this issue discuss
software in the context of the larger
system. We hope it will help you better
understand DoD’s and industry’s game
plan for future success in systems devel-
opment. Slowly but surely, we should
hope to see the day when most organi-
zations produce systems and systems
software with greater discipline and
maturity. u

Are We Headed Toward a Disciplined World?
Forrest Brown

Managing Editor

Software Metrics Hazards

CROSSTALK The Journal of Defense Software Engineering 3October 1998

Twenty years ago, complex machines were con-
trolled by hydraulic actuators or mechanical link-
ages using position switches and analog control

circuitry. Today, much of the mechanical or hydraulic
equipment and almost all analog circuitry has been replaced
by servo motors, digital position encoders, and micropro-
cessors. Complex machines still have a large mechanical
component, but their control is often digital rather than
analog. Presently, every DoD development project involves
digital technology at some level in the work breakdown
structure—either digital control systems, automated test
equipment,or training devices. Software engineering has
become a critical and key component of the engineering
development process for both military and commercial
product development.

Over the past 20 years, our systems engineering policy
and practice has evolved alongside the revolution in digital
technology. However, as digital technology evolved in its
importance in control systems, the software needed to
make them work properly became more problematic. Our
track record using DoD Directive (DoDD) 5000.1 for
weapons systems acquisition and DoDD 8120.1 for
information systems acquisition was not good and was not
getting better. In 1991, the DoD published its first acquisi-
tion reform study, and in June 1993, Deputy Under-
secretary of Defense for Acquisition Reform Colleen
Preston opened the DoD’s acquisition reform office. Prior
to the official start of acquisition reform, studies of soft-
ware engineering noted frequent and serious schedule, cost,
and performance slippages. Figure 1 illustrates the issues.

As acquisition reform gained momentum, the DoD
embraced a key conceptual change in policy. Instead of
developing and procuring hardware and software using
different processes, the DoD sought to acquire weapons
systems that met stated performance objectives. We moved
away from telling contractors how to build a product and
toward defining the end performance of a product we
would buy. We sometimes refer to this as the Performance-
Based Business Environment. We no longer require that
electronic components meet and be tested in accordance
with rigid military standards. Instead, we asked developers
to show us that their products could operate over a military

Software Engineering and Systems Engineering
in the Department of Defense

Mark Schaeffer
Office of the Undersecretary of Defense for Acquisition and Technology

As the Department of Defense (DoD) moves toward acquisition without rigid DoD standards,
acquisition is becoming less an issue of hardware vs. software or software engineering vs.
systems engineering—it is becoming an integrated whole. New DoD directives, an integrated
Capability Maturity Model, highly trained acquisition personnel, and a partnership with
industry to manage risk, will help us meet the challenges of acquisition in the next century.

operational mission profile, could be effectively and effi-
ciently maintained, and would have the required opera-
tional life span. Commercial design and development prac-
tices are encouraged, and blind adherence to military
standards is not allowed. This shift of philosophy was influ-
enced by another reality of the 1990s: The number of new-
start major programs and new-start non-major programs
was decreasing dramatically when compared to the 1970s
and 1980s.

Acquisition reform provided the impetus and the struc-
ture for the DoD to take the initial step toward incorporat-
ing software engineering into the larger context of systems
engineering. But was not software engineering unique or at
least fundamentally different from the rest of the develop-
ment process?

Our analysis confirmed our belief that the objectives of
software engineering, the problems encountered managing
it, and the techniques used to resolve those problems are
essentially the same as those found in systems engineering.
For example, the management of risk in software-intensive
programs is fundamentally the same as for any other type of
program. This similarity led us to combine the treatment
that software and hardware risk management receives in

Figure 1. The pre-acquisition reform environment.

Policy and Management

4 CROSSTALK The Journal of Defense Software Engineering October 1998

the Defense Acquisition Deskbook.
Figure 2 shows the activities that are
common to systems engineering and
software engineering.

We did find a few software engi-
neering activities that deserve special
consideration, but dealing with them
in the systems engineering context is
not difficult. We found that
• Architecture selection requires a

global approach early in the design
process because these architecture
selections affect many other design
choices downstream and are costly
to reverse.

• With relaxation of the Ada man-
date, there is a greater choice of
development languages, which
increases program risk. Mitigating
this risk is accomplished using
rigorous business case analyses for
language selection.

• As hardware systems age, they
generate a larger pool of trained
maintainers; however, rapid tech-
nological change reverses this pro-
cess for software. Searching for
programmers to meet Year 2000
demands is an example of a work
force that although technologically
advanced is not able to meet post-
deployment support needs.

• Post-deployment support is com-
mon to both hardware and software
but different in its application.

There is no software equivalent of
a form-fit-function replacement
using a different product. Similar
to post-deployment support, modi-
fication issues are not unique to
software. Although software modi-
fication holds the promise of
greater and easier system improve-
ment, it has not, in practice, gener-
ated the promised efficiencies and

benefits. Software is not as mal-
leable as originally believed, nor
are “tweaks” necessarily as low risk
and inexpensive as hoped.
Dealing with each of these areas is

not beyond our ability; the key lies in
early planning and having a risk reduc-
tion effort. Once we saw the signifi-
cant degree of commonality between
the elements of systems engineering
and software engineering, we set out
to deal with both of them in DoD
acquisition policy.

In March 1996, the DoD created a
single acquisition process that “states
the policies and principles for all DoD
acquisition programs ...” when it is-
sued DoDD 5000.1, Defense Acquisi-
tion, and DoD Regulation 5000.2-R,
Mandatory Procedures for Major De-
fense Acquisition Programs and Major
Automated Information System Acqui-
sition Programs. It also canceled
DoDD 8120.1, Life-Cycle Manage-
ment of Automated Information Sys-
tems, and provided program managers
the means to manage their programs
using a total systems approach, to opti-
mize total system performance, and to
minimize total ownership costs. Our
belief that systems engineering and

Managing the Job
� Integrated Product and

Process Development (IPPD)
� Planning and Estimating
� Work Breakdown Structure
� Contracting
� Personnel and Resources
� Integrated Program

Management
� Engineering Management
� Requirements Management
� Interface Management
� Configuration Management
� Risk Management
� Policy
� Licenses
� Logistics
� Training

Developing Product
� IPPD
� Product Lines
� Modeling and Simulation
� Design
� Integration
� Trade-off Studies
� Open Systems
� Continuous Process

Improvement
� Reliability
� Interoperability
� Producibility
� Maintainability
� Non-Developmental Item
� Government-off-the-Shelf

Software and Commercial-
off-the-Shelf Software

Assuring Product
� IPPD
� Quality
� Verification and Validation
� Inspections
� Measurement
� Tracking
� Sustainment
� Supportability
� Traceability
� Test and Evaluation
� Safety

Special Considerations
� Architecture
� Programming Languages
� Modification and Upgrade
� Post-Deployment Support

Figure 2. Elements of systems acquisition.

DoDD 5000.1 Defense
Acquisition
“Software is a key element in DoD systems. It is
critical that software developers have a
successful past performance record, experience
in the software domain or product line, a mature
software development process, and evidence of
use and adequate training in software
methodologies, tools, and environments” (DoDD
5000.1, para. 2.k).

DoDD 5000.2
Mandatory Procedures for Major
Defense Acquisition Programs
and Major Automated
Information Systems Acquisition
Programs
“Software shall be managed and engineered
using best processes and practices that are
known to reduce cost, schedule, and
performance risks. It is DoD policy to design and

develop software systems based on systems
engineering principles ...” (DoD 5000.2-R, para.
4.3.5).

To include
� Developing software system architectures

that support open system concepts.
� Exploiting COTS products.
� Identifying and exploiting software reuse.
� Selecting a programming language in the

context of systems and software
engineering factors (ASD (C31) memo, April
29, 1997).

� Use of DoD standard data (DoDD 8320.1).
� Selecting contractors with

� Domain experience in comparable
systems.

� Successful past performance record.
� Demonstrable mature software process.

� Use of software metrics.
� Assessing information warfare risks IAW

DoDD TS-3600.1.

Figure 3. DoD acquisition management key policies.

Policy and Management

CROSSTALK The Journal of Defense Software Engineering 5October 1998

software engineering are integral was recently validated when
we updated DoD Regulation 5000.2-R to comply with the
Clinger-Cohen Act. Most of the revisions were not technical
in nature but consisted of adding to existing sections of the
regulation references to the Act. Figure 3 summarizes how
we implemented provisions of the Clinger-Cohen Act and
integrated software engineering policy into the framework of
systems engineering and major program acquisition.

So, how does the software development process integrate
into the systems engineering process? There are certain as-
pects of the systems engineering process that are highly cor-
related, while others are more difficult to match up. The
system engineering process, as addressed in the Defense
Acquisition Deskbook, is comprised of four elements:
• Translating stated operational requirements into an

integrated product design using a systematic, concur-
rent approach.

• Transitioning multidisciplinary technical inputs (includ-
ing concurrent engineering of manufacturing, logistics,
and testing) into a coordinated effort to meet program
cost, schedule, and performance objectives.

• Ensuring functional and physical
interface compatibility so system
definition and design meet all hard-
ware, software, facilities, people,
and data requirements.

• Establishing a risk management
program to reduce risk early
through system element tests and
demonstrations.
Software engineering management

uses both sequential and nonsequential
processes that correspond to activities
in the systems engineering process.
The waterfall model, shown in Figure
5, is a sequential process that has the
following characteristics:
• Do the steps in a specified order.
• Define all the requirements upfront.
• Use comprehensive reviews as gates.

• Complete program design before coding.
• Emphasizes functional and allocated baselines.
• “Do the job twice if possible and involve the customer.”

Figure 6 illustrates how steps in the waterfall model
correspond to iterations of the systems engineering model.

There are several other models for software lifecycle
management, and they all can be mapped to the iterative
systems engineering process—even those models designed
to handle ill-defined user requirements.

Our conclusion, reached several years ago, and con-
firmed repeatedly since then, is that software engineering is
an integral part of systems engineering. The systems engi-
neering management techniques we have honed and the
process improvement efforts we have undertaken consoli-
date well with similar processes and improvement efforts in
software engineering. We are about to embark on the next
step in recognizing software engineering as an integral part
of the systems engineering process.

Where Will We Focus Our Future Effort?
First, we are engaged in a dialog with the command, con-
trol, communications, and intelligence community about
consolidating regulations that affect information technology
acquisition. There are a number of duplicative and overlap-
ping regulations that have their genesis in the days when
there were different “stovepipes” for weapons systems and
automated information system acquisition. As the informa-
tion revolution progresses and gains momentum, virtually
all acquisition will contain information technology. Our
intent is to derive the most synergism we can from the
DoD’s implementation of the Clinger-Cohen Act while
making good on our commitment to provide clear, unam-
biguous, and realistic guidance to program managers.

Second, to take advantage of the information revolu-
tion, we must have an acquisition work force that has the

Figure 5. The waterfall model.

Figure 4. The systems engineering process.

Software Engineering and Systems Engineering in the Department of Defense

6 CROSSTALK The Journal of Defense Software Engineering October 1998

education and training to manage
complex integrated hardware and soft-
ware engineering activities. We have
initiated a comprehensive upgrade of
the training materials used by the
Defense Acquisition University for
acquisition work-force training. This
upgrade will incorporate software
engineering management into the
resident, nonresident, and distance
learning curriculum. Our goal is to
have an acquisition work force that is
capable of maximizing the benefit of
the process improvements we are
putting in place.

Third, we are in a partnership with
industry to develop new practices,
procedures, and techniques for the
management and reduction of risk of
complex weapons systems acquisi-
tions. The National Defense Industrial
Association is supporting extensive
work in this area, and it holds the
promise of big dividends helping the
DoD complete the transition from the
“how to” of military specifications and
standards to the performance-oriented
environment of acquisition reform.

Last but not least, we are engaged
in a comprehensive integration of
Capability Maturity Models (CMM)

originally developed by the Software
Engineering Institute, and now being
championed by industry at large. The
initial common framework effort will
be based on the software CMM, the
systems engineering capability model,
and the Integrated Process Develop-
ment (IPD) CMM. Other functional
disciplines may be added later. The
work accomplished to date on the
software CMM, Version 2.0, and the
IPD CMM have been included in the
initial CMM Integration baseline. The
goal is to improve efficiency, return on
investment, and effectiveness by using
models that integrate disciplines such
as systems engineering and software
engineering—disciplines that are in-
separable in a systems development
endeavor.

As we cross the millennium, we are
committed to developing and imple-
menting a complete framework for the
management of acquisition within the
DoD. The days of separate hardware
and software acquisition is gone. The
challenge of creating a new, integrated
systems engineering and software engi-
neering framework is a daunting one,
but we are up to the task. u

About the Author
Mark Schaeffer is the
deputy director for sys-
tems engineering in
OUSD(A&T). He is
responsible for policy
and implementation of
systems engineering,

technical risk management, manufacturing,
quality, reliability and maintainability,
acquisition logistics, modeling and simula-
tion, and software engineering.
 Schaeffer has over 20 years experience in
weapons systems acquisition and program
management in the Office of the Secretary
of Defense, Naval Sea Systems Command,
and as congressional staff. He has served in
several challenging management positions
within the Naval Sea Systems Command,
to include deputy program manager and
technical director of the MK-48/ADCAP
Torpedo Project; program manager of the
CV/Amphib Firefighting Improvement
Program; and special assistant to the Ship-
yard Planning officer and chief design
engineer at Mare Island Naval Shipyard.
 Schaeffer has a bachelor’s degree in
mechanical engineering from California
State University at Sacramento and has
completed graduate studies at Massachu-
setts Institute of Technology, Duke Univer-
sity, and Georgetown University.

E-mail: mschaeff@acq.osd.mil

Figure 6. The relationship between software engineering and systems engineering.

Policy and Management

CROSSTALK The Journal of Defense Software Engineering 7October 1998

Fortunately for systems engineering (SE), the recent
changes in process standards and capability models
are for the better. In addition to documenting and

expanding our body of knowledge, the SE community is
combining the efforts of several agencies into consolidated
documents (Figure 1). These emerging “best practices” will
show forward-looking organizations how to stay competitive
in our ever-changing field. Of special interest is the expand-
ing role software engineering plays in systems engineering.

SE Process Standards
Current and emerging standards on how to engineer a sys-
tem, although similar, have varied scopes (Figure 2). Their
intended audience, e.g., manager, practitioner, determines
the level of detail and breadth of coverage. You may choose
the standard that best meets your needs or, with the emerg-
ing standards, choose only the processes that apply to you.

Current Standards
MIL-STD-499B, Systems Engineering Management; EIA
Interim Standard 632, Processes for Engineering a System;
and Institute of Electrical and Electronics Engineers (IEEE)
1220-1994, Application and Management of the Systems Engi-

neering Process all cover one SE process, which consists of
the following:
• Requirements analysis.
• Functional analysis.
• Synthesis.
• Systems analysis.
• Control.

You may apply any of the versions of this process to the
development or modification of a system. These standards
require specific tasks for each activity of the process and

Process Standards and Capability Models for
Engineering Software-Intensive Systems

Randall R. Wright
Software Technology Support Center

Figure 1. Relationships of SE standards and models.

Figure 2. Scope of SE process standards.

Current standards and models have improved the quality, cost, and repeatability of systems
engineering products and processes. However, soon-to-be-published documents are the next
step in developing, maintaining, and reengineering large, complex, software-intensive systems.
These efforts consolidate existing documents and minimize the impact of transitioning your
process improvement activities. This article explains the changes and how they affect you.

8 CROSSTALK The Journal of Defense Software Engineering October 1998

the use of a detailed management plan and event-based and
time-based schedules.

Emerging Standards
The upcoming IEEE 1220 will change little from the “trial
use” 1220-1994. Electronics Industry Association (EIA)
632, Processes for Engineering a System, expands on previous
work and will be the basis for implementation of Interna-
tional Organization for Standardization (ISO)/International
Electrotechnical Commission (IEC) 15288, System Life
Cycle Processes, in the United States. EIA 632 has 13 techni-
cal and project processes (Figure 3)
that cover
• Acquisition and supply.
• System design.
• Product realization.
• Technical management.
• Technical support.

The working draft of ISO/IEC
15288 currently has 22 generic pro-
cesses that address enterprise-wide
issues and technical and project con-
cerns (Figure 4). With EIA 632, you
apply the appropriate processes (each
consisting of one to five requirements
along with recommended tasks and
expected outcomes) for the top-down
design of system products as well as
the bottom-up realization of such
products (Figure 5). With ISO/IEC
15288, you choose the processes you

Figure 3. EIA 632 processes.

Agreement Processes
Acquisition
Supply
Negotiation

Enterprise Processes
Investment Management
Multi-Project Management
Enabling Infrastructure
Human Resources
Process Management
Quality Management
Risk Management

Figure 4. ISO/IEC 15288 processes (working draft).

need (each consisting of two to five activities with recom-
mended tasks) to meet specified lifecycle requirements of a
software-intensive system. This process goes down to, but
does not include, the software.

Process Standards for Software
MIL-STD-498, Software Development and Documentation
was canceled May 27, 1998. Its replacement is IEEE/EIA
12207, Information Technology – Software Life Cycle Processes,
the U.S. implementation of ISO/IEC 12207. Reportedly, but
unconfirmed, the commercial interim standard J-STD-016-
1995, Software Life Cycle Processes for Software Development
(derived from MIL-STD-498) is not going away and should
be finalized (J-STD-016) sometime next year.

SE Capability Models
Current and emerging capability models for systems engi-
neering aim to repeat the benefits of the Software Engineer-
ing Institute’s (SEI) Capability Maturity Model for Software
(SW-CMM):
• Better competitive position.
• Returns on investment of between 4.5 and 7.7-to-1 (as

have been experienced by Hughes, Tinker Air Logistics
Center, and Raytheon).

• Predictable and reduced cost and schedule.
• Reduced risks and fewer trouble reports.
• Improved customer satisfaction and employee morale.
• Less overtime, absenteeism, and turnover.

In addition, integrated SE and software models should
save time and money and reduce redundancy in assess-
ments for both software and SE process improvement.
Fortunately, the models map well to each other (Figure 6).
Even at lower levels of detail, the models specify similar
functions. Improvement efforts based on older models will
not be wasted, and the transition to a newer model should
not be traumatic. For example, if winning a contract de-

Project Management Processes
Planning
Assessment
Control

Technical Processes
Acquirer Requirements Definition
Other Stakeholder Requirements Definition
System Requirements Definition
System Architecture Design
System Architecture Design Implementation
System Product Validation
System Product Verification
System Product Transition
Systems Analysis

Policy and Management

CROSSTALK The Journal of Defense Software Engineering 9October 1998

Figure 5. Engineering lifecycle.

Figure 6. Mapping of SE capability models.

pends on an evaluation using a newer
model, most of what you have already
done should “find a home” under a
new name.

Current Models
The Systems Engineering Capability
Maturity Model (SE-CMM), was pub-
lished by the Enterprise Process Im-
provement Collaboration in 1994.
About the same time, the International
Council on Systems Engineering (IN-
COSE) developed the Systems Engi-
neering Capability Assessment Model
(SECAM). Although SECAM has less
visibility than SE-CMM, both are
being used in the SE community. An-
ecdotal evidence from those who have
used the SE-CMM suggests a return
on investment similar to software
CMM use. Lockheed Martin has
reported “a positive difference” from
“more mature systems engineering
processes.”

Last year, the Federal Aviation
Administration (FAA) published its
Integrated Capability Maturity Model
(FAA-iCMMSM), which combines the
software, the systems engineering, and
the software acquisition CMMs into
one integrated model. FAA uses this

MMC-ES MACES MCES MMCi-AAF

gnireenignE smetsyS
gnireenignE

lacinhceT gnireenignEroelcycefiL
)tnadnepeDelcycefiLtoN(gnitroppuS

tcejorP tnemeganaM tnemeganaM tcejorProtnemeganaM

noitazinagrO noitazinagrO tnemnorivnE lanoitazinagrO

will integrate SECM, the software
CMM, and Integrated Product Devel-
opment CMM (IPD-CMM) concepts
and build on the FAA-iCMM effort.
The result will be a core of common
processes and additional domain-
specific processes for software and for
SE (Figure 8). Reportedly, there is
much commonality between the three
models and few domain-specific pro-
cesses. CMMI’s first version will give

in-house and freely distributes it. Plans
are under way for three divisions at
Warner-Robins Air Logistics Center
(software, SE, and acquisition) to use
FAA-iCMM and Integrated Process
and Product Development (IPPD) as
guides for “enterprise-wide process
improvement.”

Emerging Models
EIA Interim Standard 731, Systems
Engineering Capability Model (SECM),
provides complete coverage of EIA
632 and is consistent with IEEE 1220.
SECM (a merging of SE-CMM and
SECAM) has 19 focus areas that ad-
dress technical, management, and
environment issues (Figure 7). The
future of this interim standard de-
pends on the National Defense Indus-
trial Association’s Capability Maturity
Model Integration (CMMI) effort. If
CMMI successfully incorporates
SECM concepts, EIA Interim Stan-
dard 731 would be duplicative and
would probably be rescinded. Other-
wise, the SECM will progress to a full
(vs. interim) standard.

CMMI will provide a common
framework for multiple capability
models. In its first version, CMMI

Technical
1.1 Define Stakeholder and System

Level Requirements
1.2 Define Technical Problem
1.3 Define Solution
1.4 Assess and Select
1.5 Integrate System
1.6 Verify System
1.7 Validate System

Management
2.1 Plan and Organize
2.2 Monitor and Control
2.3 Integrate Disciplines
2.4 Coordinate with Suppliers
2.5 Manage Risk
2.6 Manage Data
2.7 Manage Configurations
2.8 Ensure Quality

Environment
3.1 Define and Improve the Systems

Engineering Process
3.2 Manage Competency
3.3 Manage Technology
3.4 Manage SE Support Environment

Figure 7. EIA interim standard 731 focus areas.

Process Standards and Capability Models for Engineering Software-Intensive Systems

10 CROSSTALK The Journal of Defense Software Engineering October 1998

three models from which to choose.
You may
• Conduct a software assessment

using core processes and software
processes.

• Conduct an SE assessment using
core processes and SE processes.

• Conduct an integrated assessment
using core processes and combined
software and SE processes.
The next version of the CMMI is

likely to incorporate the software acqui-
sition CMM (SA-CMM). Subsequent
versions may address additional models
(Secure Systems Engineering CMM,
People CMM, Team CMM, etc.)

Capability Models for Software
The CMM for Software (versions 1.0
and 1.1) has seen wide use and accep-
tance since 1993. SEI has halted the
nearly complete update (version 2.0,
draft C) in anticipation of CMMI
(described above).

Development of Some Models
Placed On Hold
Some organizations are so interested
in an integrated capability model they
are developing their own in-house
versions, as the FAA did. However,
since CMMI seems imminent, Litton
PRC and Rockwell/Collins (and prob-
ably others) have halted such efforts.
Likewise, SEI will not release version
2.0 of the SW-CMM. It also is uncer-
tain whether the FAA will update its
iCMM as planned. Finally, as reported
above, EIA Interim Standard 731
(SECM) is not currently being consid-
ered for publication as a full standard.

Figure 9. IDEAL model.

Impetus for Change
You have seen how the SE climate is
changing; current standards and mod-
els are giving way to better ones. You
know the benefits of improving your
business; staying competitive is im-
perative. Structured process improve-
ments are the key to successful adop-
tion of these new technologies.
• “If you don’t know where you are,

a map won’t help.” – Watts
Humphrey

• “If you don’t know where you are
going, any road will do.” – Chinese
proverb

• “Even if you’re on the right track,
you’ll get run over if you just sit
there.” – Arthur Godfrey

Acknowledgments
I thank the following subject matter
experts, whose presentations at the
Eighth International Symposium of
INCOSE and discussions were the
source for the majority of the informa-
tion and graphics in this article: Don
Barber and Bill Mindlin, chairmen of
the INCOSE Capability Assessment
Working Group; Lt. Col. Joe
Jarzombek, director of the U.S. Air
Force Embedded Computer Resources
Support Improvement Program; Jerry
Lake, owner and chief scientist of Sys-
tems Management International; Sarah
Sheard, senior systems engineer at the
Software Productivity Consortium. I
also thank their respective organiza-
tions for allowing the modification of
their graphics for this article. u

About the Author
Randall R. Wright is a
consultant at the Soft-
ware Technology Sup-
port Center (STSC)
specializing in systems
engineering products
and services, represent-

ing the STSC on the CMMI project, and
coordinating the next version of Guidelines
for Successful Acquisition and Management of
Software-Intensive Systems. He has over 20

Figure 8. CMM Integration.

Policy and Management

CROSSTALK The Journal of Defense Software Engineering 11October 1998

years military and civilian service with
aircraft, missiles, and various anti-armor
munitions and nuclear delivery systems. He
has performed at various levels in mainte-
nance, acquisition, logistics, operations, and
policy. He has a bachelor’s degree in electri-
cal engineering from Arizona State Univer-
sity, completed Air University’s Software
Professional Development Program and Air
Command and Staff College, holds three
acquisition professional certifications, and is
a captain in the Air Force Reserves.

Software Technology Support Center
7278 Fourth Street
Hill AFB, UT 84056
Voice: 801-777-9732 DSN 777-9732
Fax: 801-777-8069 DSN 777-8069
E-mail: wrightr@software.hill.af.mil
Internet: http://www.stsc.hill.af.mil/

Document Sources
Copies of the documents discussed in
this article can be obtained from the
following sources.

Capability Maturity Models
SEI Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213
Voice: 412-268-5800
E-mail: customer-relations@sei.cmu.edu
Internet: http://www.sei.cmu/pub/docu-
ments/…
…/96.reports/pdf/tr020.96.pdf (SA-CMM)
…/96.reports/pdf/hb004.96.pdf (SE-CMM)
…/94.reports/pdf/tr24.94.pdf (SW-CMM)

FAA-iCMM
Federal Aviation Administration
AIT-5, 800 Independence Avenue SW
Washington, DC 20591
Voice: 202-267-7443
E-mail: linda.ibrahim@faa.dot.gov
Internet: http://www.faa.gov/ait/ait5/FAA-
iCMM.htm

IEEE 1220, IEEE/EIA 12207
IEEE Service Center
P.O. Box 1331
Piscataway, NJ 08855-1331
Voice: 800-678-4333
E-mail: customer.service@ieee.org
Internet: http://standards.ieee.org

DoD agencies may obtain copies at
Standardization Order Desk
700 Robbins Avenue, Building 4/D
Philadelphia, PA 19111-5094

SECAM
INCOSE, 2033 Sixth Avenue #804,
Seattle, WA 98121

Voice: 800-366-1164, 206-441-1164
E-mail: incose@halcyon.com
Internet: http://www.incose.org/
priclist.html

EIA 632, EIA 731 ISO/IEC 12207,
ISO/IEC15288, J-STD-016, MIL-
STD-498, MIL-STD-499B
(commercial source)

Global Engineering Documents
15 Inverness Way East
Englewood, CO 80112-5776
Voice: 800-854-7179
E-mail: global@his.com
Internet: http://global.his.com

Recommended Reading
1. Hollenbach, Craig R. and Steve Mosier,

“Developing and Applying a Joint SW-
CMM and SECM Appraisal Methodol-
ogy,” Eighth Annual International Sympo-
sium of INCOSE, Vancouver, British
Columbia, Canada, July 26-30, 1998.

2. Jarzombek, Lt. Col. Joe, “CMMI Sup-
ports Enterprise-Wide Process Improve-
ment,” CROSSTALK, July 1998, p. 2.

3. Lake, Jerome G., “Processes for Engineer-
ing Systems,” Eighth Annual Interna-
tional Symposium of INCOSE, Vancouver,
British Columbia, July 26-30, 1998.

4. Martin, James N., “Evolution of EIA 632
from an Interim Standard to a Full Stan-
dard,” Eighth Annual International
Symposium of INCOSE, Vancouver, Brit-
ish Columbia, July 26-30, 1998.

5. Martin, James N., “Overview of the EIA
632 Standard: Processes for Engineering

Successfully Adopting New Technologies
Adopting a new technology (whether it is a process, methodology, or tool)
means change! This is more than a technical issue; you must overcome
social, behavioral, managerial, and organizational barriers. To quote Capers
Jones, “As a general rule, technology [adoptions] are not very rapid pro-
cesses, and the bigger the organization, the longer it takes.”

When adopting new technologies, the STSC recommends implementing
them with the aid of the SEI’s IDEAL Model (Figure 9).
• Initiating “sets the stage” for process improvement by stimulating

change and laying the necessary groundwork.
• Diagnosing is the gap analysis to see where you are, decide where you

want to be, and determine what you will do next.
• Establishing puts the people and plans in place.
• Acting is the execution of your plans with appropriate measures and

project tracking.
• Leveraging lets you learn from what you did and do better the next time.

a System,” Eighth Annual International
Symposium of INCOSE, Vancouver, Brit-
ish Columbia, July 26-30, 1998.

6. “Military Standard Software Develop-
ment and Documentation,” CROSSTALK,
August 1998, p. 4.

7. Schaeffer, Mark D., “Capability Maturity
Model Process Improvement,” CROSSTALK,
May 1998, p. 3.

8. Schaeffer, Mark D., Philip Babel, Jack
Ferguson, et al., “Overview of the Inte-
grated Capability Maturity Model
(CMMI) Development Project,” panel
presentation, Tenth Annual Software
Technology Conference, Salt Lake City,
Utah, April 22, 1998.

9. Sheard, Sarah A., “Quagmire,”
www.software.org/quagmire.

10.Sheard, Sarah A. and Jerome G. Lake,
“Systems Engineering Standards and
Models Compared,” Eighth Annual
International Symposium of INCOSE,
Vancouver, British Columbia, July 26-
30, 1998.

11.Sheard, Sarah A., Susan Rose, Linda
Inrahim, and Wafa Makhlouf, “Two
Approaches to CMM Integration,”
Eighth Annual International Symposium of
INCOSE, Vancouver, British Columbia,
July 26-30, 1998.

12.Widmann, E. R., “Key Features of the
“Merged” EIA/IS 731-1 Systems Engi-
neering Capability Model,” Eighth An-
nual International Symposium of IN-
COSE, Vancouver, British Columbia, July
26-30, 1998.

Process Standards and Capability Models for Engineering Software-Intensive Systems

12 CROSSTALK The Journal of Defense Software Engineering October 1998

In 1995, the Army’s Training and
Doctrine Command (TRADOC)
and the Army National Guard

began to invest in Key Enabling
Initiatives to provide “training to the
soldier any time and anywhere in the
world.” They had the additional goal
to use appropriate current media
formats, migrating to superior media
as the technology becomes available.
Computer-based training promises
to provide soldiers high-quality train-
ing while reducing costs and travel
time.

In their Army Training XXI Cam-
paign Plan, the deputy chief of staff
for training at TRADOC has cre-
ated three Axes of Attack to inte-
grate advanced technology into the
Army Training Plan. These axes
include Warfighter XXI for unit
training, Warrior XXI for institu-
tional and self-development, and
Warnet XXI, which provides sup-
port for the other axes. The elec-
tronic foundation is the Army
Training Digital Library, which can
be accessed at http://www.atsc-
army.org/atdls.html. This digital
library allows users to access a
wealth of training materials and
resources stored on Digital Training
Access Centers at TRADOC instal-
lations all over the country. For
example, the access center at Fort
Knox, Ky. would provide primary
support for the Armor School while
Fort Rucker, Ala. would support
Aviation. There are 21 schools on
15 Army posts, so 15 access centers
would exist to distribute training to
a globally deployed Army. This
provides a distributed database that

will improve user accessibility and
reduce network congestion.

TRADOC has fielded two opera-
tional access centers. One, located at
Fort Eustis, Va., uses an Asynchronous
Transfer Mode network. The other is
located at the United States Military
Academy at West Point and uses
switched fast Ethernet.

Architecture
The Digital Training Access Center
consists of an integrated Web server,
database server, and video server. The
Web and database server can run on
NT workstations with a minimum of
two processors. Clustering technolo-
gies appear promising and could offer
additional scalability and fault toler-
ance. In order to provide concurrent,
streamed video to a large student
population (more than three class-
rooms), the access center requires a
Video Server. Video Servers can be
NT- or Unix-based, tend to be highly
scalable, and provide robust connectiv-
ity. A general-purpose file server can
provide file-based video for a small
student population.

These solutions are intended for a
high-bandwidth Intranet. For World
Wide Web or Internet distribution,
the access center would require a low-
bandwidth alternative. The systems
currently fielded at Fort Eustis and
West Point can provide low-bandwidth
(28.8 Kbps) access to remote users
and high-bandwidth (up to 3 Mbps)
access to local students. Remote users
can obtain higher-quality video
through compact disc or digital video
disc distribution, but version control

and distribution costs limit the
attractiveness of this option.

The digital library will maintain
the URLs for the access centers. This
will provide soldiers with easy access
to available courseware. The integra-
tion of Web, database, and video
resources will allow content creators
to create, store, and share the vari-
ous multimedia components.

Future
The most significant recent ad-
vancements have been in Web-based
training tools such as Java, scripting
languages, dynamic HyperText
Markup Language, cascading style
sheets, streaming media, and data-
base integration. These technologies
have closed the gap between Web-
based products and executables
created with multimedia authoring
products. In fact, most current
computer-based training packages
export to a Web format. TRADOC
is currently upgrading its software
to incorporate the management of
these new capabilities. Inevitably,
the quality of the courseware will
determine the success of the pro-
gram.

TRADOC plans to field several
access centers beginning this year.
To meet the needs of Force XXI,
the access centers must allow access
to today’s users, leverage existing
technology, and yet, not succumb to
technological obsolescence.

Lt. Col. Anthony Ruocco
E-mail: ruocco@exmail.usma.edu

Maj. Todd L. Smith
E-mail: dt4571@exmail.usma.edu

Designing a Digital Library
to Support Global Army Training

Lt. Col. Anthony Ruocco and Maj. Todd L. Smith
U.S. Army

CROSSTALK The Journal of Defense Software Engineering 13October 1998

There is a long history of
organizations performing im-
pressive feats of systems engi-

neering (SE). The growing complexity
of software-intensive systems has made
SE increasingly important for embed-
ded systems and information systems.

Although there is no generally ac-
cepted single definition of SE, the
pursuit of excellence in SE continues
(see sidebar – Systems Engineering
Definitions). Increased interest in
systems engineering is evident from
the following:
• The creation and growth of the

International Council on Systems
Engineering (INCOSE).1

• The development of systems engi-
neering process models.

• The government supported integra-
tion efforts for use of systems engi-
neering models.
This article is written for the ben-

efit of an organization or enterprise
that contains multiple groups, some
with responsibility for SE activities
and others with responsibility for soft-
ware engineering activities.

For the most part, the business of
these organizations is oriented to the
development of one or more software-
intensive products such as printers,
cellular telephones, automobiles, and
weapons. The organization typically
has a product development focus with
product-focused groups that work with
one or more other groups such as
component engineering, software de-

Expanding the Focus of Software Process
Improvement to Include Systems Engineering

Kent A. Johnson and Joe Dindo
TeraQuest Metrics, Inc.

There is a growing interest in improving the efficiency of systems engineering in organizations that
develop software-intensive systems. A number of organizations have demonstrated that it is possible to
increase software process capability through software process improvement programs. As a result, there
is a heightened interest in improving the processes used in systems engineering of software-intensive
systems using systems engineering process improvement programs. This article addresses some motiva-
tions for improving the systems engineering process, gives an overview of systems engineering process
models, and identifies how to leverage an organization’s successes in software process improvement.

velopment, marketing, sales, manufac-
turing, and service. The organization
executes a product development
lifecycle from which the various ver-
sions of the product are developed and
released. It is recognized that many of
these concepts also are applicable to
information systems development.

Information systems development
has a similar set of considerations,
though the domains being brought
together as a system might be differ-
ent. The new information system may
require development or acquisition of
a computing platform, development or
acquisition of software, definition of
new processes, creation of training,
hiring of a new team of workers, and
establishing a help desk. Integrating all

Systems Engineering Definitions
Systems Engineering – Definition 1
“Systems Engineering is the selective application of scientific and engineering
efforts to

Transform operational need into a description of the system configuration
that best satisfies operational need according to measures of effectiveness.
Integrate related technical parameters and ensure compatibility of all physi-
cal, functional, and technical program interfaces in a manner that optimizes
total system definition and design.
Integrate efforts of all engineering disciplines and specialties into total
engineering effort.”5 – Systems Engineering Capability Maturity Model, Version 1.1.

Systems Engineering – Definition 2
“Systems Engineering is an interdisciplinary approach and means to enable the
realization of successful systems.”6 – Draft version 0.5 of the Systems Engineering
Capability Model EIA 731-1.

of these disciplines around the cre-
ation of the new system requires many
of the same processes as the systems
engineering of product-focused
groups. For simplicity and clarity, this
article deals with product-focused
organizations.

Systems Engineering Process
Models
Since 1992, several groups have devel-
oped SE process models. These groups
include representatives from industry
and government organizations with an
established record of accomplishment
in systems engineering of large com-
plex systems. Table 1 gives a summary
of three of the models that resulted
from this work.

Systems Engineering

14 CROSSTALK The Journal of Defense Software Engineering October 1998

Close examination of the Systems
Engineering Capability Maturity
ModelSM (SE-CMM)2 [1], Systems
Engineering Capability Assessment
Model (SECAM) [2], and Systems
Engineering Capability Model
(SECM) [3] shows they have
• The same (continuous) architecture.
• Many of the same authors.
• Similar process or focus areas

divided into categories for techni-
cal, management, and organiza-
tional elements [4].
To illustrate some of the attributes

of an SE process model, Table 2 lists
the 18 process areas of the SE-CMM.
The table is divided into three catego-
ries: Engineering, Project, and Organ-
izational. Process areas (or focus
areas) of the SECAM and SECM are
nearly identical; however, for consis-
tency, the SE-CMM process names
will be used throughout the remainder
of this article.

The architecture of the SE-CMM
is continuous, as is the architecture
of the SECAM and the proposed
architecture of the SECM models.
The CMM for software uses a staged
architecture.

Staged Architecture Models
Staged models provide guidance to
organizations on the order of improve-
ment activities they should undertake
based on (key) process areas at each
stage or maturity level. Performing the
practices in the appropriate process
area at a given level will help stabilize
projects and allow the execution of
further improvement activities. Be-
cause all stages contain a collection of
process areas on which to focus cur-
rent activities, incremental improve-
ment is supported in each maturity
level or stage.

Each stage provides the foundation
for the next stage, which promotes the
“crawl before you walk” approach.
However, some organizations will
decide, for business or cultural rea-
sons, to address certain process areas
earlier than defined by the stages. For
example, users of the CMM for soft-
ware often address some Level 3 key
process areas (KPAs) while the organi-

zation is working on Level 2. Typically,
an organization establishes a Software
Engineering Process Group and begins
work on the Organization Process
Definition and Organization Process
Focus (Level 3) KPAs. Another ex-
ample is an organization that imple-
ments defect analysis (from the Level 5
KPA Defect Prevention) before estab-
lishing Level 2 processes. There are
many cases where these early imple-
mentation approaches have led to
failure or slow progress. This is often
the case because foundation processes

such as project planning and tracking
are missing, or because organizations
lack focus from trying to incorporate
too much change at one time.

Continuous Architecture Models
Continuous models provide more
flexibility in defining process improve-
ment programs. These models recog-
nize that individual process areas are
performed at distinct capability or
maturity levels. Based on the institu-
tionalization of the base practices of
that process area, a continuous model

Table 1. SE process models.

)MMC-ES(ledoMytirutaMytilibapaCgnireenignEsmetsyS

repoleveD ,CLLTACES,nitraMdeehkcoLmorfsrebmeM.noitaroballoCtnemevorpmIssecorPesirpretnE:
,muitrosnoCytivitcudorPerawtfoS,noitartsinimdAnoitaivAlaredeF,esnefeDfotnemtrapeD,sehguH

,ygolonhceTdnasdradnatSfoetutitsnIlanoitaN,stnemurtsnIsaxeT,)IES(etutitsnIgnireenignEerawtfoS
).stnemucodIESsadesaeleR(.srehtodna

erutcetihcrA suounitnoC: stnemelE saerAssecorP81: seirogetaC dna,tcejorP,gnireenignE:
noitazinagrO

noisreVtnerruC 1.1noisreV,MMC-ES:
5991rebmevoNdehsilbup

ytilibaliavA ehtnoegrahcoN:
erimgauQskrowemarFeeS.beW
erimgauq/gro.erawtfos.www//:ptth

dohteMtnemssessA MMC-ES:
hcraM.1.1noisreV,dohteMlasiarppA

6991

sutatS ybdemrofrepslasiarppaytrap-drihthtiwdlrowehtdnuorasnoitazinagroybdesusiledomehT:
.muitrosnoCytivitcudorPerawtfoSehtdna,TACES,tseuQareTgnidulcnisnoitazinagro

)MACES(ledoMtnemssessAytilibapaCgnireenignEsmetsyS

repoleveD gnireenignEsmetsySnolicnuoClanoitanretnIehtfopuorGgnikroWtnemssessAytilibapaC:
muitrosnoCytivitcudorPerawtfoSdna,laroL,CSC,sehguH,nammurGmorfsrebmemlaitinihtiw)ESOCNI(

.)05.1noisreVhguorhtsrotubirtnoc941(

erutcetihcrA suounitnoC: stnemelE saerAsucoFyeK91: seirogetaC ,gnireenignEsmetsyS:
noitazinagrOdna,tnemeganaM

noisreVtnerruC 5.1noisreV,MACES:
.6991yluJdehsilbup

ytilibaliavA noitamrofnI:
gro.esocni.wwwtaelbaliava

dohteMtnemssessA -ignEsmetsyS:
dohteMtnemssessAytilibapaCgnireen

sutatS .srebmemESOCNIybdemrofrepgniebstnemssessA:

)MCES(ledoMytilibapaCgnireenignEsmetsyS

repoleveD edulcnisrebmemtcejorP.eettimmoCgnireenignEsmetsyS74-G)AIE(noitaicossAseirtsudnIscinortcelE:
ehtecalperotdednetniMACESehtdnaMMC-ESehtforegremasisihT.sevitatneserperAIEdna,ESOCNI,CIPE

.dradnatsnoitazidradnatSrofnoitazinagrOlanoitanretnInasaevreslliwtahtledomelgnisahtiwowt

erutcetihcrA suounitnoC: stnemelE saerAsucoF91: seirogetaC ,tnemeganaM,lacinhceT:
tnemnorivnEdna

noisreVtnerruC saw137SIAIE:
,02lirpAnoitubirtsidtollabrofdetneserp

miretninasadehsilbupebdluoC.8991
.8991yluJsaylraesadradnats

ytilibaliavA ,gnitirwsihtfosA:
.elbaliavaylcilbupton

dohteMtnemssessA dedulcnieboT:
.dradnatsmiretniehtni

sutatS otdetcepxesiIMMCnokrowesuacebdetcelessawnoitangiseddradnatsmiretnI.tnempolevedrednU:
.raeyanihtiwnoitacifidomMCESeriuqer

Systems Engineering

CROSSTALK The Journal of Defense Software Engineering 15October 1998

assessment provides a profile with
specific maturity levels for each pro-
cess area.

In the SE-CMM, the SE activities
performed for a process area are struc-
tured as base practices within each
process area. For each level of the
process area, exemplary generic prac-
tices apply. For example, the generic
practices for each level are:
• Level 1 – perform the process.
• Level 2 – document the process.
• Level 3 – tailor the standard prac-

tice.
• Level 4 – determine process capa-

bility.
• Level 5 – continuously improve the

standard process.
To use these models for process

improvement, organizations must
perform an analysis of how the various
processes address their needs. This
takes advantage of the inherent flex-
ibility of the model. Such an exercise
also provides an opportunity for the
organization to gain consensus on the
sequence of appropriate organization-
wide improvement activities.

Considering their understanding of
staged models, a number of organiza-
tions with a significant investment in
software CMM-based software process
improvement (SPI) have sought an SE
process model with a staged architec-
ture. Having a staged SE model makes
it easy to describe the model content
to people in the organization and eases
the integration of SE improvement

European Systems and Software Initia-
tive. The POSE project is managed by
Thomson-CSF with additional mem-
bers from TeraQuest Metrics, Inc. and
the European Software Institute.

Corporations with multiple organi-
zations or multiple business units can
use such a model to support a syner-
gistic approach to SE process im-
provement across the corporation. A
review of process areas and generic
practices associated with each level
reveals that staging is roughly equiva-
lent to the CMM for software.

This example SE model is incre-
mental, with each stage building on
the next. That is, to perform at Stage
Two, an organization must perform
the Level 2 generic practices listed in
the left column for all eight of the
process areas listed in the right col-
umn. To perform at Stage Three, an
organization must perform the Level 2
and Level 3 generic practices for the
Stage Two and Three process areas.
Stage Four organizations perform
Levels 2, 3, and 4 generic practices for

Table 3. POSE Systems Engineering Staged Model (Version 2.0, May 1998).

activities with current software process
improvements.

Table 3 shows an SE staged model
developed by mapping the SE-CMM
process areas and generic practices
onto four levels. This model was devel-
oped by the Process-Oriented Systems
Engineering (POSE) project. The
POSE project is a process improve-
ment experiment that is part of the

Table 2. Process areas of the CMM.

saerAssecorPgnireenignE saerAssecorPtcejorP saerAssecorPlanoitazinagrO

snoituloSetadidnaCezylanA.1 ytilauQerusnE.8 .31 noitazinagrOenifeD � ssecorPgnireenignEsmetsySs

etacollAdnaevireD.2
stnemeriuqeR

snoitarugifnoCeganaM.9 noitazinagrOevorpmI.41 � gnireenignEsmetsySs
ssecorP

erutcetihcrAmetsySevlovE.3 sksiReganaM.01 noitulovEeniLtcudorPeganaM.51

senilpicsiDetargetnI.4 lortnoCdnarotinoM.11
troffElacinhceT

troppuSgnireenignEsmetsySeganaM.61
tnemnorivnE

metsySetargetnI.5 troffElacinhceTnalP.21 sllikSdnaegdelwonKgniognOedivorP.71

sdeeNremotsuCdnatsrednU.6
snoitatcepxEdna

sreilppuShtiwetanidrooC.81

metsySetadilaVdnayfireV.7

secitcarPcireneG saerAssecorP

egatS
owT

dekcarTdnadennalP�2leveL
ecnamrofrepgninnalP�

ecnamrofrepdenilpicsiD�
ecnamrofrepgniyfireV�
ecnamrofrepgnikcarT�

)6AP(snoitatcepxEdnasdeeNremotsuCdnatsrednU
)2AP(stnemeriuqeRetacollAdnaevireD

)81AP(sreilppuShtiwetanidrooC
)21AP(troffElacinhceTnalP

)11AP(troffElacinhceTlortnoCdnarotinoM
)9AP(snoitarugifnoCeganaM

)tilps�8AP(ecnarussAytilauQhsilbatsE
)APlanoitidda(tcartnoClortnoC

egatS
eerhT

denifeDlleW�3leveL
ssecorpdradnatsagninifeD�

ssecorpdradnatsehtgnimrofreP�

noitazinagrOenifeD �)31AP(ssecorPESs
)71AP(sllikSdnaegdelwonKgniognOedivorP

)3AP(erutcetihcrAmetsySevlovE
)5AP(metsySetargetnI

)7AP(metsySetadilaVdnayfireV
)4AP(senilpicsiDetargetnI

)tilps�51AP(eniLtcudorPtpodA
)01AP(sksiReganaM

egatS
ruoF

dellortnoCylevitatitnauQ�4leveL
slaogytilauqelbarusaemgnihsilbatsE�

ecnamrofrepgniganamylevitcejbO�

)tilps�8AP(ytilauQerusnE
)61AP(tnemnorivnEtroppuSESeganaM

egatS
eviF

gnivorpmIylsuounitnoC�5leveL
ytilibapaclanoitazinagrognivorpmI�

ssenevitceffessecorpgnivorpmI�

noitazinagrOevorpmI �)41AP(ssecorPESs
)tilps�51AP(noitulovEeniLtcudorPeganaM

Expanding the Focus of Software Process Improvement to Include Systems Engineering

16 CROSSTALK The Journal of Defense Software Engineering October 1998

all process areas through Stage Four.
Finally, Stage Five organizations must
perform all generic practices for all
process areas.

In two process areas, it has been
necessary to split the process area
across stages. An example of a split
process area is Ensure Quality, which
has been split into two process areas:
Establish Quality Assurance at Stage
Two and Ensure Quality at Stage 4.
The POSE project also chose to re-
move the Analyze Candidate Solutions
(PA 1) process area and add the Con-
trol Contract process area.

Process Mismatch — Why
Should You Care?
Organizations cannot perform to their
full potential with a mismatch in the
capability of the processes used by
different development groups within
the organization. A process mismatch
exists when the software and systems
processes operate at different levels of

maturity. Consequently, organizations
experience the following:
• Difficulty in communication and

commitments between project
groups.

• Inability to effect improvements to
their overall processes.

• Overall performance below the
capability of the individual soft-
ware or systems processes when
considered on their own merit.
This situation becomes more evi-

dent as the number of organizations
making significant progress in SPI
increases. In these organizations, soft-
ware processes are often at a higher
maturity level than the SE processes.
This is not an indication of the ability
or professionalism of the engineers,
but an indication of unaligned pro-
cesses. There also are cases of higher
maturity level systems groups that have
interface mismatch problems with
lower-level software groups; however,
not much data exists since the number

of systems assessments remains rela-
tively low.

Given the cost associated with prod-
uct development and process improve-
ment activities, it is prudent to
promptly address these mismatches in
capability. For example, an organization
performing at CMM Level 1 needs to
focus on the mechanisms by which
project commitments are made and
kept. They need to make cooperative
commitments with the SE organization.
For the development of the product, in
such a case, both the software organiza-
tion and the SE organization need
project plans with adequate visibility
into the market commitments and into
their respective work. No other techni-
cal advances in the SE organization can
make up for a mismatch in the basic
commitment process.

The following sections are divided
by software CMM maturity levels, and
they discuss what the software devel-
opment group needs from the SE
group for the organization to best
exploit the SPI investment. This in-
volves leveraging the strengths of the
systems engineering group in a col-
laborative manner so that the organiza-
tion meets its overall goals.

Level 2
A CMM Level 2 organization supports
the basic commitment process. Re-
quirements and schedules from and
with SE are key to this success. Typi-
cally, software commitments are made
between software project managers
and agents of the product development
groups such as program managers and
systems engineers. The software orga-
nization needs the following from
these agents
• Well-defined requirements (particu-

larly those allocated to software).
• Negotiable schedules.
• A stable physical architecture.

Level 3
A CMM Level 3 organization supports
the required infrastructure for using a
defined process. The essential element
is coordination of all activities be-
tween the multiple disciplines and
groups collaborating to build a prod-

Table 4. Contributions of systems engineering to process capability.

leveL lanoitazinagrO
roivaheB

gnireenignEmetsyS
noitubirtnoC

saerAssecorPMMC-ES

2 stnemtimmoC denifeD-lleW�
stnemeriuqeR

)2aP(stnemeriuqeRetacollAdnaevireD�
)6AP(snoitatcepxEdnasdeeNremotsuCdnatsrednU�

elbaitogeN�
seludehcS

)01AP(sksiReganaM�
)11AP(troffElacinhceTlortnoCdnarotinoM�

)21AP(troffElacinhceTnalP�
lacisyhPelbatS�

erutcetihcrA
)2AP(stnemeriuqeRetacollAdnaevireD�

)9AP(snoitarugifnoCeganaM�
3 -noitazinagrO

ediW
noitazidradnatS

dootsrednU-lleW�
erutcetihcrAmetsyS

)3AP(erutcetihcrAmetsySevlovE�
)5AP(metsySetargetnI�

)7AP(metsySetadilaVdnayfireV�
)9AP(snoitarugifnoCeganaM�

denifeD-lleW�
lanoitazinagrO

sessecorP

noitazinagrOenifeD� �)31AP(ssecorPgnireenignEsmetsySs
noitazinagrOevorpmI� �)41AP(ssecorPgnireenignEsmetsySs

lanoitazinagrOraelC�
secafretnI

)4AP(senilpicsiDetargetnI�

4 evitatitnauQ
gnidnatsrednU

deganaM-lleW�
noitulovEeniLtcudorP

)51AP(noitulovEeniLtcudorPeganaM�

deganaM-lleW�
troppuSgnireenignE

tnemnorivnE

)61AP(tnemnorivnEtroppuSgnireenignEsmetsySeganaM�

5 suounitnoC
tnemevorpmI

ediW-noitazinagrO�
sucoFytilauQ

)8AP(ytilauQerusnE�

suounitnoC�
fotnemevorpmI

sessecorPdenifeD

noitazinagrOevorpmI� �)41AP(ssecorPgnireenignEsmetsySs

Systems Engineering

CROSSTALK The Journal of Defense Software Engineering 17October 1998

uct. The product development groups
need to ensure that they all have the
following with which to work.
• A well-understood system

architecture.
• Well-defined processes.
• Clear organizational interfaces.

Systems architecture is defined as
“The fundamental and unifying system
structure defined in terms of system
elements, interfaces, processes, con-
straints, and behaviors.”3

Level 4
A CMM Level 4 organization provides
a clear and quantitative definition of its
products and processes. Organizations
moving into Level 4 begin to see in-
creased benefit from reuse programs as
the products produced by the organiza-
tion have a higher recognized quality.
The product development groups need
to provide the following:
• A well-managed product line

evolution.
• A well-managed engineering sup-

port environment.
Product-line engineering is defined

as “The engineering of a family of
products that is developed using a
domain analysis approach and share
the same system architecture.”4

Level 5
A CMM Level 5 organization per-
forms continuous process and product
improvement. Through defect analysis,
the organization identifies root causes
and eliminates them at the source. The
product development groups need to
provide the following:
• An organization-wide quality focus.
• Continuous improvement of de-

fined processes.
Table 4 summarizes the above and

provides a cross-reference to the spe-
cific SE-CMM process areas that

support each software CMM level as
described above.

Using the SE Capability Models
After reviewing the systems engineer-
ing process models and reading about
the CMM integration activities (see
sidebar – CMM Integration Project),
many organizations have asked the
following questions.
• How can we use these various

models?
• What should we do next?

The answer to the first question is
familiar to those who have been per-
forming SPI: Any one of the SE models
can be used to identify process assets,
perform systems engineering process
assessments, and identify and exploit
the organization’s best practices. The
key—prompted by the number of mod-
els as well as the changes in these SE
models—lies in the second question.
The answer to the second question is to
select one of the following alternative
approaches (Table 5).
Approach 1 – Use an existing systems

model (SE-CMM or SECAM).
Approach 2 – Add System Process

Areas to the software CMM.
Approach 3 – Add software KPAs to

a systems model.
Approach 4 – Wait until one of the

integration efforts is completed.

Table 5. Approach consideration matrix.

CMM Integration Project
The CMM integration project [5] was initiated in response to organizations

using multiple process models that need a consistent process model to apply
to improvement activities. The project is sponsored by the U.S. DoD, Office of
the Secretary of Defense for Acquisition and Technology at the Software Engi-
neering Institute. A product of the integration project is the Common CMM
Framework (CCF), which allows for both continuous and staged model repre-
sentations (CCF Draft E). The CCF is represented by a set of standard require-
ments for all CMMs. Little public information is currently available; however,
the CMMI Web page at www.sei.cmu.edu promises additional information on an
ongoing basis. The stated project goals are to

• Enable accelerated release of a software CMM equivalent to Version 2.0,
Draft C under CCF, which is ISO 15504 compatible.

• Provide complete product suite—complete model plus assessment and
training materials.

• Provide opportunities for all industry and government organizations to
participate.

noitaredisnoClanoitazinagrO

sehcaorppA ssecorPerawtfoSgnitsixE
margorPtnemevorpmI

gnireenignEfosucoF
noitazinagrO

egnahCfoycnegrU

1 ESgnitsixEesU
ledoM

morfni-yubtegplehyaM)+(
spuorGsmetsyS

gnitsixeehttiolpxetonyaM)�(
margorp � krows

desucofsmetsysfI)+(
desucoferawtfosfI)�(

ssecorPtcejorP)+(
egairtedivorpsaerA
yadotelbaliavA)+(

2 metsySddA
otsaerAssecorP

erawtfoSrofMMC

ddanac,3leveLerawtfostafI)+(
ekiltsujsaerAssecorPgnireenignE

APKgnireenignEtcudorPerawtfoS

desucoferawtfosfI)+(
desucofmetsysfI)�(

emosekatlliW)�(
ottroffednaemit

regremenifed

3 erawtfoSddA
ledoMESotsAPK

foesutsebekamtonyaM)�(
ssecorPerawtfoSgnitsixe

erutcurtsarfnItnemevorpmI

desucofsmetsysfI)+(
desucoferawtfosfI)�(

emosekatlliW)�(
ottroffednaemit

regremenifed

4 roMCESroftiaW
etelpmocotIMMC

margorptnerrucnotcapmioN)+(
margorptnerrucnotcapmioN)�(

edivorpdluohsIMMC)+(
sucofdegremarof

ebotylekiL)�(
gnimocniemitemos

Expanding the Focus of Software Process Improvement to Include Systems Engineering

18 CROSSTALK The Journal of Defense Software Engineering October 1998

To select between the alternatives,
the organization needs to consider the
current improvement programs, the
engineering focus of the organization
and its products, and the level of need
or urgency for change.

Current Improvement Programs
The aim is to exploit any successes,
momentum, and products of existing
SPI programs. The organization should
consider the following questions.
• Is there an active SPI program?
• Is it well accepted by the

organization?
• Is the program making progress?
• Is the organization now working to

attain Level 3 or above?
If the answer to some or all of these

questions is “yes,” there are strong
reasons to leverage this momentum.
On the other hand, if the ongoing SPI
program is slow moving, not accepted,
or regressing, it may be wiser to start
over with a fresh approach.

Organization’s Engineering Focus
The organization’s engineering focus
or cultural perspective will have an
impact on how best to approach the
problem. The organization should
consider the following questions.
• Is the organization primarily in the

business of producing systems or
software?

• What is the focus of most new
development?

• Where is the locus of control?
If the business is a software busi-

ness inside another apparent busi-
ness, it is wise to focus on the soft-
ware CMM.

Urgency for Change
A pressing need that is visible to the
organization motivates action. The
organization should consider the fol-
lowing questions.
• Is the organization facing near

death?
• Is there a major program in

trouble?
Organizations that are in signifi-

cant trouble or almost going out of
business are sometimes more willing

About the Authors
Kent A. Johnson is the
director of systems engi-
neering for TeraQuest
Metrics, Inc., where he
has helped companies in
five countries to improve
their systems and soft-

ware processes through systems and soft-
ware assessments, training, and process-
specific consulting. He is a former project
manager of the Process and Methods Pro-
gram at the Software Productivity Consor-
tium (SPC). While at the SPC, he co-wrote
the software and system development
method, as well as led the team that helped
create it, which is used by over 800 engi-
neers in the development of the F-22 Ad-
vanced Tactical Fighter. He is also a co-
author of the Spring-Verlag book, Ada 95
Quality and Style.

TeraQuest Metrics, Inc.
10812 Monticello Drive
Great Falls, VA 22066-4224
Voice: 703-404-9769
Fax: 512-219-0587
E-mail: johnson@teraquest.com
Internet: http://www.teraquest.com

Joe Dindo is a senior
associate at TeraQuest,
where he provides train-
ing and process improve-
ment coaching to clients
working to improve their
systems and software

development capabilities. He has over 10
years experience working in all phases of
the systems engineering lifecycle, its sup-
porting processes, and process improve-
ment activities. His engineering experience
encompasses a wide range of roles using
multiple lifecycle models and methods. His
professional responsibilities have included
managing small- and medium-sized
projects and providing leadership to project
and middle management teams.

TeraQuest Metrics, Inc.
6772 Locust Drive
Troy, MI 48098
Voice: 248-879-2947
Fax: 512-219-0587
E-mail: dindo@teraquest.com
Internet: http://www.teraquest.com

References
1. Bate, Roger, et al., A Systems Engineering

Capability Maturity Model, Version 1.1,
Handbook SECMM-95-01, Software

to proceed with improvement efforts
than successful organizations. Such
organizations can use the information
from the process areas to address
immediate project issues.

Table 5 shows the positive and
negative impact of these organiza-
tional considerations based upon the
four approaches. For example, the
first approach (Use Existing SE
Model) is an effective choice for or-
ganizations that are seeking buy-in
from their systems groups, need
quick improvement of their overall
project management capabilities, and
need something immediately. The
buy-in is easier with these models
since they were developed by systems
engineers for systems engineering. As
such, these models can be used as
they exist today; what is needed is an
integration of the chosen SE model
with the organization’s current SPI
efforts, either through an organiza-
tional integration effort or through an
external integration project.

Recommendations
In spite of the various SE models and
the development activities surrounding
them, we strongly suggest that you do
not wait. Based on your situation,
select any of the first three approaches
suggested above and get started. Al-
though work is proceeding on the
integration of the systems process
models, these integration activities will
take some time before a model
emerges that meets the ever-growing
set of needs. Further, an SE process
improvement (SEPI) program based
on one of the existing models should
require minimal effort to migrate to a
new model when it becomes available.
Remember that all the models are
developed from the same basic source
materials. The benefit of progress
from an active SEPI program should
outweigh any risk of rework that re-
sults from a new SE model. The risk
can be minimized by staying current
with model developments and making
progress in your SEPI program. u

Systems Engineering

CROSSTALK The Journal of Defense Software Engineering 19October 1998

Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pa., 1995.

2. SECAM: Systems Engineering Capability
Assessment Model, Version 1.5, INCOSE,
1996.

3. SECM: Not yet released; planned as EIA
IS 731, Electronics Industries Alliance,
Alexandra, Va.

4. Sheard, Sarah A. and Jerome G. Lake,
“Systems Engineering Standards and
Models Compared,” Software Productiv-
ity Consortium, Herndon, Va.
(http://www.software.org/pub/papers),
April 15, 1998.

5. Schaeffer, Mark D., “Capability Maturity
Model Process Improvement,” CROSSTALK,
Software Technology Support Center,
Hill Air Force Base, Utah, May 1998.

Notes
1. INCOSE can be found at

http://www.incose.org.
2. Capability Maturity Model is a service

mark of Carnegie Mellon University.
CMM is registered with the U.S. Patent
and Trademark Office.

3. Definition approved by the Systems
Architecture Working Group of IN-
COSE at INCOSE ’96, Boston, Mass.

4. Definition approved by the Systems
Architecture Working Group of IN-
COSE at INCOSE ’96, Boston, Mass.

5. Army Field Manual, pp. 770-778.
6. Definition approved by the International

Council on Systems Engineering at the
January 1996 workshop.

Expanding the Focus of Software Process Improvement to Include Systems Engineering

This is a practitioner’s discussion of the evolution of the current practice and application of RTCA/DO-178B[1] for
software approval in the commercial world. The objectives include developing and providing the data for development of
educational material, providing the rationale behind the guidance for people new to the commercial certification environ-
ment, and clarification of the intent and application of DO-178B. The derivation of the software approval guidelines from
the Federal Aviation Regulations to DO-178B is discussed to clarify its relationship to the government regulations. An
explanation of the Designated Engineering Representative system is also provided along with a discussion of the safety
process to describe the environment in which DO-178B is used. The evolution of the avionics industry that eventually led
to DO-178B is included as part of the background behind the rationale of DO-178B. The key aspects of each version,
from the original version to DO-178B, provide insight to the rationale for the inclusion and further development of the
content. In addition, there are special considerations in using DO-178B concerning its current guidance for systems and
highlights of the problem areas for those from a military culture. As the industry moves to use of commercial-off-the-shelf
components, the incentive is greater to reconcile the difference between military standards and commercial standards.
Trustworthiness of software is an absolute concept independent of the verification process used. This article explores the
differences and similarities between DO-178B and MIL-STD-498 affecting the software development process.

DO-178B: Software Considerations in Airborne
Systems and Equipment Certification

Leslie A. Schad
Boeing Commercial Airplane Group

This article can be found in its entirety on the Software Technology Support Center Web site at http://
www.stsc.hill.af.mil/CrossTalk/crostalk.html. Go to the “Web Addition” section of the table of contents.

Web Addition

Some of Crosstalk�s phone numbers have changed. Please use the
phone numbers in the masthead on page 31.

New Crosstalk Phone NumbersHello,

Crosstalk?

20 CROSSTALK The Journal of Defense Software Engineering October 1998

Which is better—mouse or
keyboard? For example,
since the introduction of

the computer mouse, numerous inter-
active computer operations are now
“point and click” even though the
mouse is the slowest interface for
performing many operations. It takes
time to move the mouse into position
and click it, especially when it must
point to a relatively small area on the
screen (such as a “soft button”). Al-
though older technology than a mouse,
using a function key when possible is
not only much quicker, it also puts less
wear and tear on your body.

This became apparent to me last
winter when I used a new software
tool intensively for extended periods.
A certain operation required three
mouse clicks every time: one to select
the item on the screen to be acted
upon, one to click the button bar to
indicate the desired operation, and
one to close a dialog box that asked,
“Are you sure?” The three mouse
clicks were in widely diverse areas of
the screen, each required precise
placement of the cursor in a tiny spot
on the screen, and the computer took
a lot of time to process each click.

Since I was performing this opera-
tion on many hundreds of individual
items during the course of a day, I
could not help but notice how slow the
“mouse clicking” process was. Also,
my fingers, wrist, arm, and shoulder
ached at the end of the day. It was
much more time-consuming than
performing the same operation on a
competing vendor’s tool, which took
only one mouse click. Additionally, for
most operations, the other tool often

gave me a choice between using the
mouse or a function key. Having
found that my wrist and arm got more
tired and painful from repeatedly using
the mouse, I prefer the function key
when given the choice. Chalk one up
for the competition.

This story illustrates how my per-
sonal experience led me to conclude
the fewer mouse clicks, the better. But
this is nothing more than a subjective
opinion. The world loves mice. I may
be the only person in the world com-
plaining about too many mouse clicks.
However, I recently saw some hard
data from an internal IBM human
factors study that empirically demon-
strates that the mouse is the slowest of
several common data entry devices.
Yet, most software designers do not
know this—they are often not aware
that such studies exist. Because the
mouse is newer technology than the
keyboard, many of today’s designers—
who grew up using a mouse—assume
it is better. Even though graphical user
interfaces (GUIs) invite the use of a
mouse, it may not always be the opti-
mal choice.

Human factors is an area where
applying the systems perspective to
engineering is key. The systems per-
spective requires looking at all parts of
a system throughout all phases of sys-
tem development and deployment and
questioning how a system will be used.
For human factors considerations, this
means performing operational sce-
narios early in the system development
to determine human interaction with
the system, specifying human factors
requirements, reviewing designs for
human factors impacts, and modeling

the user interface in mock-ups. This
activity should continue through sys-
tem verification to validate assump-
tions, scenarios, and data. At this
point in development, it is usually too
late and too expensive to reverse any
adverse design decisions—unless they
seriously detract from the usability of
the system.

The vendors of the “slow” tool
described above may have developed
operational scenarios, but unless they
tested them with users under loaded
network conditions, they would not
have discovered what the implications
were for the human using the system
to perform the operation hundreds of
times in a row. Nonetheless, it is a
highly likely operational scenario for
that particular tool.

The Personnel Subsystem
Recently, I learned a term that I had
never heard, but one that I immedi-
ately liked, the “Personnel Subsystem.”
Engineers have become better at re-
membering the human in the system.
The user interface on any system usu-
ally has ergonomics requirements
applied to it, and conceptual diagrams
of systems often have a stick figure or
clip art of a person representing the
user(s). We know they are there, and
we acknowledge their existence to
some degree.

Specifications usually contain a
section called “Personnel and Train-
ing”—it was required by MIL-STD-
490. Generally, there are some re-
quirements in the specifications;
usually high-level statements that
specify education, training, and skills
for different users (operators,

“Honey, I Forgot the Users!”
Lori Pajerek

Lockheed Martin

We have all heard some human factors horror stories, and as consumers, most of us have had
numerous personal experiences with products that are difficult, dangerous, or annoying to use.
Their designers did not seem to have humans in mind. Poor human factors designs are the
result of oversight or ignorance. The designers did not do enough work to ensure that the
demands placed on the humans are not onerous. To address this shortcoming, all types of
design engineers should learn to apply a systems perspective to their part of a system.

Systems Engineering

CROSSTALK The Journal of Defense Software Engineering 21October 1998

maintainers, etc.). But while I have often seen an architec-
tural element called “Training” in system architectures, I
have yet to see a personnel subsystem, beyond the stick
figure or clip art variety. It is the forgotten subsystem.

We know there are requirements that should be allo-
cated to a personnel subsystem, yet we design this sub-
system by default. Every time you specify or design a hu-
man interface, you are also implicitly specifying or
designing the expected characteristics and behavior of the
human half of the interface. Humans must perform to this
implicit specification, but there is never a requirements
review or design review of the personnel subsystem. Unless
your system is never touched by human hands (a rarity),
you have a personnel subsystem, whether you identify it
explicitly or not. Just because you do not have to manufac-
ture it does not mean it does not exist; it is a real part of
the system integration picture.

By including a personnel subsystem in your system ar-
chitecture, you are more likely to achieve the objective of
looking at all parts of the system through all phases, includ-
ing the people part of the system. Though we sometimes
assign a few requirements to users, we often do not follow
through. How do we know if we have “specified” a user
with inappropriate or inconsistent requirements? You treat
the personnel subsystem like other subsystems—review the
requirements and verify the design.

It also is important to remember that consideration for
the personnel subsystem is not limited to physical ergonom-
ics. There are other factors involved that relate to the users’
mental processes. These range from straightforward things
such as consistent menu design to more subtle intangibles
such as impact on job satisfaction.

Conclusion
Human factors is following a path that has been experi-
enced in a number of other traditional engineering disci-
plines. Concepts like quality control, configuration manage-
ment, and plug-and-play interfaces were all institutionalized
in hardware engineering long before they were applied to
software. Ergonomics has become a serious consideration
for all types of hardware items. We have furniture, CRTs,
keyboards, mice, wrist rests, and all kinds of other things
that feature ergonomic design. In software, we now have
windows and GUIs, but these features merely scratch the
surface of what is possible. However, the systems perspec-
tive is what motivates someone to investigate the effects of
the combined interaction of the ergonomic hardware and
the user-friendly software with the personnel subsystem.
What happens when a human sits for hours in the ergo-
nomic chair, using the ergonomic mouse to click thousands
of times on the software-generated GUI? All the pieces were
designed to be kind to humans, but the integrated system
still causes the user to go home in the evening with eye-
strain and a sore neck. When designers think like users, the
result is a system that is truly user friendly. u

About the Author
Lori Pajerek is an advisory systems engineer in the Systems Engi-
neering Technology department at Lockheed Martin Federal Sys-
tems in Owego, N. Y. With over 15 years experience in systems
and software engineering for defense-related industries, her specific
area of interest and expertise is requirements engineering and re-
quirements management. Prior to joining Lockheed Martin, she
was employed at Link Flight Simulation (now part of Raytheon),
the world’s leading manufacturer of flight simulation devices. She
has a bachelor’s degree in mathematical sciences from Binghamton
University and is a member of the International Council on Sys-
tems Engineering.

Lockheed Martin Federal Systems
1801 State Route 17C
Mail Drop 0902
Owego, NY 13827
Voice: 607-751-6226
Fax: 607-751-2008
E-mail: lori.pajerek@lmco.com

“Honey, I Forgot the Users!”

Systems Engineering at the STSC
The newest systems engineering technologies can be

confusing—SECM, SECAM, SE-CMM, CMMI, 632, 731, 1220,
15288. The Software Technology Support Center can help
you sort through the jumble. We partner with you to
identify, evaluate, and adopt effective technologies that
improve product quality and process efficiency and pre-
dictability. Our consultants work directly with you to
tailor proven processes, methods, and tools to your
organization’s needs.
• Process improvement: assess, plan, implement,

and lead improvement efforts that keep you
competitive.

• Technology evaluation: identify, pare down,
evaluate, and select what best meets your needs.

• Technology adoption. Understand, apply, and
exploit technologies to improve quality, produc-
tivity, and customer satisfaction.
Although our information is free, we provide on-site

briefings, training, workshops, assessments, planning, and
guidance on a cost-recovery basis. The STSC specializes in
• Requirements definition, design, documentation,

test, and reengineering.
• Acquisition, project, and configuration

management.
• Assessments and metrics.

Call us for your systems engineering needs.

Randall R. Wright Russell Lee
Voice: 801-777-9732 Voice: 801-775-5740
E-mail: wrightr@software.hill.af.mil E-mail: leeru@software.hill.af.mil

22 CROSSTALK The Journal of Defense Software Engineering October 1998

The SE-CMM is a tool designed
to help organizations measure
and improve their systems

engineering processes. It is sometimes
called a “continuous model,” which
means the architecture is designed to
provide the user with much flexibility
and to loosely describe how companies
should structure their improvement
plans. This contrasts with the CMM
for software, termed a “staged model,”
which uses a more structured and
prescriptive architecture that describes
a clear sequence for improvement
through its maturity levels.

The result of an assessment against
a continuous model is a rating profile
that gives you a different number for
each assessed area, whereas the result
of staged model assessment is a single
number. Some companies appreciate
the flexibility of continuous models,
but many find them overly complex,
leaving potential users confused and
unable to develop an effective plan of
attack for deploying the model within
their own companies.

There are a number of staged and
continuous models being used by in-
dustry. While the concepts in this
article apply to other models, this
article focuses strictly on the Systems
Engineering and Software Capability
Maturity Models.

Systems Engineering CMM
Description
The SE-CMM describes the essential
systems engineering and management
tasks that any organization needs to
perform. These essential tasks are
organized into logical groupings called
Process Areas (all are listed in Figure
1.) The manner in which these essen-
tial systems engineering tasks are per-
formed can range from completely ad
hoc to continuously improved using
statistical data. For each process area,
this progression is broken into five
primary steps, called Capability Levels
in the SE-CMM, each of which lays
the foundation for the next step.

The SE-CMM architecture allows
users to decide which systems engi-

neering tasks (process areas) are essen-
tial or most important to their line of
work, then lets them decide how well
they want to manage those essential
tasks (at what Capability Level they
want to perform each process area).
Because there are 18 process areas in
the model, the user has much au-
tonomy but also has many decisions to
make.

Many organizations prefer to set
performance goals against Capability
Maturity Models. Management may
be familiar with the software CMM
and make statements such as they
“want to be Level 2 by the end of the
year.” Although that statement has a
clear meaning in the software CMM,
its meaning in the SE-CMM is less
than obvious. It is often interpreted at
being capability Level 2 in all process
areas, but does that make sense?

Most users do not realize that
some SE-CMM process areas are far
more difficult to accomplish than
others. Some have a broader scope,
require participation from all levels in
the company, or are based on a de-
tailed understanding of an organiza-
tion’s ability to develop a product. An
analogy is comparing the SE-CMM
process areas to educational classes.
Some process areas are at the high
school level, whereas others would be
completed as part of a doctoral pro-
gram. And although it may be fair to
expect a high school student to get an
“A” in a high school-level class, you
cannot conclude that the same student
is a failure for getting a “D” in a
graduate-level class. Quite to the con-
trary, you would be proud that the
student was passing the class. Like-

Improvement Stages
Kerinia Cusick

SECAT LLC

Let us face it: A Capability Maturity Model (CMM) with a single number assess-
ment rating system, such as the CMM for software, is easier to communicate and
understand than a multinumber model, such as the Systems Engineering (SE)
CMM. Improvement Stages are a way to organize the information in the SE-
CMM to simplify the model. As an added benefit, Improvement Stages can be
used to bridge the gap between the systems engineering and software CMMs.

Systems Engineering

Figure 1. Improvement Stages.

CROSSTALK The Journal of Defense Software Engineering 23October 1998

wise, it is unrealistic to expect that a
company just starting on the road to
continuously improved product devel-
opment processes is going to achieve a
capability Level 2 in all process areas.

Improvement Stages
Close examination shows a link be-
tween the content of the SE-CMM
process areas and the concepts embed-
ded in the capability levels. Because

capability levels are designed to repre-
sent a gradual progression of improved
management and processes, mapping
the process areas to the concepts in-
herent in the capability levels provides

If you are familiar with the Systems Engineering (SE)
and the Software Capability Maturity Models
(CMM), you know they have different architectures

but much overlap and that the concepts behind the
increasing level of process management and control
(called capability level in the SE-CMM and maturity
level in the software CMM) are nearly identical.

You may ask: “Why bother using two different mod-
els when they have about a 70 percent overlap?” In fact,
some organizations do want to merge the software and
SE-CMMs to better improve their presently separate
efforts. The Federal Aviation Administration even cre-
ated its own integrated Capability Maturity Model. On
the other hand, some prefer to keep the models sepa-
rate, but still need greater coordination between their
separate improvement efforts.

No matter what approach you choose, it is impor-
tant to overcome the differences in architecture. One
solution is discussed in this article: “Improvement
Stages,” which allow you to more clearly see the com-
monality between the two CMMs. There is some dis-
continuity because there is no software CMM equiva-
lent of capability Level 1 or Improvement Stage 1. But
looking at Improvement Stage 2 though 5, you can see
the similarities shown in the table.

Use Improvement Stages to coordinate SE and
software improvement efforts. If your goal is maturity
Level 3 in the software CMM, you should also try to
achieve Improvement Stage 3 in the SE-CMM. If the
software and SE improvement groups are both trying
to get the organization to maturity Level 3 and Im-
provement Stage 3 respectively, they will have the
added benefit of trying to achieve similar objectives
and facing identical problems.

Should you be interested in creating a systems-soft-
ware model for your own purposes, use the Improve-
ment Stages to make the translation. If you choose to
incorporate the SE content into the SW-CMM, pull the
SE-specific process areas and capability level practices
from the SE-CMM and slide them over to the SW-
CMM, keeping them at the same level. If the SE-unique
process area was at Improvement Stage 3, it should be
at maturity Level 3 in the SW-CMM.

Getting Beyond the Differences
Using the Systems Engineering and

Software Capability Maturity Models Together

Improvement Stages

MMC-WS
leveL

yeKMMC-WS
emaNaerAssecorP

MMC-EStnelaviuqE
emaNaerAssecorP

MMC-ES
tnemevorpmI

egatS

2 stnemeriuqeR
tnemeganaM

)tnelaviuqeon(

2 gninnalPtcejorPWS troffElacinhceTnalP 2

2 dnagnikcarTtcejorPWS
thgisrevO

troffElacinhceTlortnoCdnarotinoM 2

2 ecnarussAytilauQWS)ylnoAPfonoitrop(ytilauQerusnE 2

2 noitarugifnoCWS
tnemeganaM

snoitarugifnoCeganaM 2

2 tcartnocbuSWS
tnemeganaM

nidetrats(sreilppuShtiwetanidrooC
1egatStnemevorpmI , wontub

)leveltnelaviuqetademrofrep

2

3 ssecorPlanoitazinagrO
sucoF

atontub,MMC-ESniAPralimis(
)tnelaviuqeraelc

3 ssecorPlanoitazinagrO
noitinifeD

noitazinagrOenifeD � ssecorPESs
)aerassecorpfonoitrop(

3

3 margorPgniniarT egdelwonKdnasllikSgniognOedivorP 3

3 WSdetargetnI
tnemeganaM

noitazinagrOenifeD � ssecorPESs
)aerassecorpfonoitrop(

3

3 gnireenignEtcudorPWS)tnelaviuqeon(

3 noitanidrooCpuorgretnI nidetrats(senilpicsiDetargetnI
2egatStnemevorpmI , wontub

)leveltnelaviuqetademrofrep

3

3 sweiveRreeP ytilibapaCtaecitcarpweivertcefeD
3leveL

3

4 ytilauQWS
tnemeganaM

)APfonoitrop(ytilauQerusnE 4

4 ssecorPevitatitnauQ
tnemeganaM

)APfonoitrop(ytilauQerusnE 4

5 egnahCssecorP
tnemeganaM

noitazinagrOevorpmI � ssecorPESs 5

5 egnahCygolonhceT
tnemeganaM

)tnelaviuqeon(

5 noitneverPtcefeD ytilibapaCtaecitcarpsisylanalasuaC
5leveL

5

24 CROSSTALK The Journal of Defense Software Engineering October 1998

an excellent method of organizing the
process areas by level of complexity.
The following describes how the 18
areas were mapped to a five-stage
“Improvement Stages” model.
• Capability Level 1 – ad hoc perfor-

mance. The primary focus is on
getting the system out; few, if any
processes are in place. Therefore,
the process areas that address per-
forming the systems engineering
activities are mapped to this level.

• Capability Level 2 – characterized
by planning and tracking within
projects. This level includes pro-
cess areas that deal with project
management.

• Capability Level 3 – the key con-
cept is development and use of
organizational standards and
achieving an aligned organization.
Includes all of the process areas
that discuss organizational-wide
activities or the development of
standards.

• Capability Level 4 – characterized
by statistical process control; pro-
cess areas that discuss measuring
process quality quantitatively are
mapped to this level.

• Capability Level 5 – primarily
characterized by continuous im-
provement using statistical process
control data; therefore, the process
area that addresses improving the
standard process maps to Level 5.
Figure 2 shows the result of map-

ping the SE-CMM process areas to
the capability level concepts. To avoid
confusion with other terminology, we
call the result of this mapping Improve-
ment Stages. Listed on the vertical axis
are the 18 process areas in the SE-
CMM. Across the horizontal axis are
the capability levels. Each Improve-
ment Stage is cumulative, adding on
more process areas and capability
levels. For example, Stage 2 requires
performing all 12 process areas (from
Analyze Candidate Solutions to Plan
Technical Effort) at a capability Level

2. Stage 3 adds on another four pro-
cess areas, making a total of 16 pro-
cess areas that must be performed at a
capability Level 3.

Unfortunately, since the authors of
the SE-CMM did not have the staging
concept in mind when writing the
model, the concepts in some process
areas span multiple maturity levels.
The two problematic process areas are
“Ensure Quality” and “Improve
Organization’s Standard Systems Engi-
neering Process,” which both have
content that maps to lower capability
levels. To avoid encouraging compa-
nies from trying to implement these
process areas in a manner that does
not make sense, they were placed at
the higher capability level.

Improvement Stages arrange the
processes areas by order of difficulty. I
do not mean to imply that a company
should put on blinders, not consider-
ing any of the process areas in Im-
provement Stage 3 until they have
completely mastered the process areas
in Stage 2. One company using this
system has referred to Improvement
Stages as a primary area of emphasis.

Think of Improvement Stages as a
ski slope map. The SE-CMM process
areas are similar to a map showing only
the location of trails on a mountain.
Viewing this map, the skier knows how
many slopes there are and where they
are but knows nothing of the level of
difficulty. The Improvement Stages
concept is similar to knowing which
trails are appropriate for beginners,
intermediates, and advanced skiers.
You can always start skiing on the ad-
vanced slopes as a beginner, but the
odds are good that you will break your
neck; likewise, you can tackle a hard
process area first, but the odds are
good that you will not be able to
achieve your expectations.

Conclusions
Although the SE-CMM is an effective
systems engineering process measure-

ment and improvement tool, it pre-
sents the users with a measure of flex-
ibility that can almost be harmful if to
little time is spent to understand the
content of the model and the complex-
ity of the individual practices within
each of the process areas. Many man-
agers are setting company-wide, single-
number goals without understanding
that the SE-CMM has a different ar-
chitecture than the software CMM.

However, even when managers do
understand the SE-CMM structure,
they are often unsure how to interpret
the results of an assessment. Many
even look at the 18-number profile
and immediately calculate an average,
determining that their organization is,
for example, a 2.4. Improvement
Stages provide a method of using a
more meaningful single number score.
If your company wants to be “Level
2,” consider restating the goal to be
“Improvement Stage 2.” u

About the Author
Kerinia Cusick, a co-founder of SECAT
LLC, is one of the authors of the Industrial
Collaboration Systems Engineering Capabil-
ity Maturity Model and an author of the
Integrated Product Development Capability
Maturity Model. She is an experienced
CMM teacher, assessor, and process im-
provement leader. She started her career at
Grumman Aerospace working on digital
flight control systems for experimental and
fighter aircraft. At Hughes Missile Systems
and Hughes Space and Communications,
she transferred to systems engineering,
working projects ranging from commercial
communication satellites to Space Defense
Initiative conceptual design studies. She has
a master’s degree in systems management
from the University of Southern California
and a bachelor’s degree in mechanical engi-
neering from Drexel University.

14742 Beach Blvd., #405
La Mirada, CA 90638-4217
Voice: 714-449-0423
E-mail: kcusick@secat.com

Systems Engineering

CROSSTALK The Journal of Defense Software Engineering 25October 1998

SIGAda ’98 (Formerly Tri-Ada):
“Ada in Context”

Dates: Nov. 8-12, 1998
Location: Washington, D.C.
Sponsors: Association for Com-

puting Machinery (ACM) Spe-
cial Interest Group (SIG) on
Ada in cooperation with ACM
SIG on Applied Computing,
SIG on Biomedical Computing,
SIG on Computers and Society,
SIG on Computer Science
Education, SIG on Program-
ming Languages, SIG on Soft-
ware Engineering, and Ada-
Europe.

Subject: This largest Ada-focused
conference will be organized to
attract participants from all
segments of the software engi-
neering community.

Contact: http://www.acm.org/
sigada/conf/sa98

Second International Quality
Week Europe ’98

Theme: Europe and Year 2000:
The Industrial Impact

Dates: Nov. 9-13, 1998
Location: Brussels, Belgium
Sponsors: Association for Com-

puting Machinery, European
Software Institute, European
Software Systems Institute,
Software Research, Inc.

Subject: Focus on advances in
software test technology, quality
control, risk management, soft-
ware safety, and test automa-
tion.

Contact: Rita Bral, conference
director, Software Research
Institute, 325 Third Street,
Fourth Floor, San Francisco,
CA 94107-1997

Voice: 415-957-1441
Fax: 415-957-0730
E-mail: bral@soft.com
Internet: http://www.soft.com/

QualWeek/QWE98

Metrics 1998: The Fifth
International Symposium on
Software Metrics

Dates: Nov. 20-21, 1998
Location: Hyatt Regency Hotel,

Bethesda, Md.
Sponsor: IEEE Computer Society

Technical Council on Software
Engineering

Subject: This symposium presents
the latest results in software engi-
neering measurement as well as
several state-of-the-art reports and
panel presentations.

Contact: Mark Zelkowitz, program
chairman, University of Mary-
land, Dept. of Computer Science,
College Park, MD 20742

Voice: 301-405-2690
Fax: 301-405-3691
E-mail: mvz@cs.umd.edu
Internet: http://aaron.cs.umd.edu/

metrics98

18th Annual International Software
Testing Conference and EXPO

Theme: “Testing for the Year 2000
and Beyond”

Dates: Conference, Nov. 16-20,
1998; EXPO, Nov. 19, 1998

Location: Orlando, Fla.
Subject: Conference tracks will in-

clude real-world practitioner
presentations on year 2000 test-
ing techniques, year 2000 success
stories, testing new technologies,
test management, testing tech-
niques.

Sponsor: Quality Assurance Institute
Voice: 407-363-1111
Fax: 407-363-1112
E-mail: lisag@qaiusa.com

Federal Imaging
Dates: Dec. 1-3, 1998
Location: Washington, D.C.
Subject: The inaugural edition of

FEDnet’98, FOSE’s Internet and
Government Electronic Com-
merce and exhibition will fill a

niche by serving the special
Internet and Intranet needs of
the federal government.

Voice: 44-181-910-7878
Fax: 44-181-910-7813
E-mail: inquiry@federalal

imaging.reedexpo.com
Internet: http://

wwwreedexpo.com/fact-
sheets/1635.html

FOSE: America’s Integrated
Information Technology
Exposition

Dates: March 1, 1999
Location: Washington, D.C.
Subject: FOSE is the largest Inte-

grated Information Technology
trade event serving all branches
of government. FOSE offers
the full spectrum of informa-
tion technology solutions to the
largest computer market in the
world.

E-mail:
inquiry@fose.reedexpo.com

Internet: http://
fose.reedexpo.com

11th Software Engineering
Process Group Conference:
SEPG ’99

Dates: March 8-11, 1999
Location: Atlanta, Ga.
Subject: This four-day event

brings together international
representatives from govern-
ment, industry, and academia
for a truly global perspective on
software process improvement.

Sponsor: Software Engineering
Institute

Voice: 412-268-3007
Fax: 412-268-5758
E-mail: sepg@sei.cmu.edu

Coming Events

26 CROSSTALK The Journal of Defense Software Engineering October 1998

Systems engineering requires
that developers work at the sys-
tem level, which means they

must understand the requirements of
and interaction between hardware,
software, and end users. End users,
who usually have little experience with
systems development, need a detailed
understanding of how they will be
required to jointly operate with soft-
ware and hardware modules to com-
plete their missions; without this un-
derstanding, they may not be able to
provide the quality of input needed
during the design process.

As a result, systems engineers’ prob-
lems largely concern barriers to under-
standing, as they must design and de-
scribe complex systems in a way that
can be readily understood by software
designers, hardware designers, and end
users. To create a system description
that is correct and can be analyzed, it
helps if the description is both under-
standable and reasonably formal.

Evolution of Odel
The Ada programming language was
introduced to the Swedish defense
community about 11 years ago. To
popularize Ada, the Swedish govern-
ment contracted with Swedish contrac-
tor Sypro to create a simple Ada-based
pseudo language to introduce Ada’s
semantics and syntax. The language,
named “Adel” (Ada-based Design Lan-
guage), was designed with simplifica-
tions of Ada, including the following:

• Tasking was simplified into a “con-
cur” construct where a set of con-
current procedures are listed be-
tween the new reserved words
“concur” and “end concur.”

• Type and interface management
was informal.

• The control structures from Ada
were retained with some minor
simplifications.
To support the language, an ana-

lyzer named Adela (Adel Analyzer) was
developed to help write correct Adel.
The Adel language was tried in several
projects with varying degrees of suc-
cess. Some experiences were
• People with a programming back-

ground could learn Adel in roughly
two hours.

• Adel could be used not only for
software design but also for logic
design of hardware and operator
parts of systems.

• The informal management of inter-
faces between objects (packages)
made it necessary to perform
manual checks on system descrip-
tion consistency.

• End users could learn to under-
stand Adel descriptions if the
description was given line by line.

• In software engineering, Adel
helped sort out problems before
programming commenced.

Development of Odel
Experiences with Adel were encourag-
ing, which led to the vision of a sys-

tem design language based on Ada 95.
Although the new language was to
provide system descriptions that could
be used for programs written in any
language, Ada was a logical foundation
because it gives developers the ability
to split a large system into packages,
each of which contain a manageable
and understandable part of the system
with clear interfaces.

The idea was to create a language
that was still simple enough to be
taught to people with a programming
background in a couple of hours and
that was explainable to end users. At
the same time, the language needed to
be sufficiently formal that hardware
engineers, software developers, and
end users could check for consistency
problems among the descriptions.

The resulting language, Odel, was
developed by the private company
Romet as part of the “complex sys-
tems” program sponsored by the
Swedish Authority for Industrial De-
velopment. Romet retained ownership
of Odel but decided to make the lan-
guage publicly available without cost.
Although Odel is derived from Ada
95, some constructs are different, and
you cannot use Ada 95 tools to analyze
Odel descriptions.

Benefits of the Odel Language
Detailed system descriptions written in
the Odel can be understood not only by
users and developers but also by tools
that support the Odel language. This

Overcoming System Design Challenges
The Creation of a System Description Language

Ingmar Ögren
Tofs AB

It is difficult for system developers to create designs that represent the system in a manner that
is understandable, detailed, and useful enough to everyone who must give input to the design.
Yet, no matter how well this obstacle is dealt with, it is still difficult to find and fix design flaws
in written system descriptions. This article describes Odel (Object Design Language), a read-
able, “executable” system description language that can be mastered by hardware and software
developers in a couple of hours and that can easily be explained to end users. Not only does
Odel increase understanding among all players but also combined hardware, software, and
user descriptions written in Odel can be electronically analyzed and debugged to allow design-
ers to spot incompleteness, flaws, and inconsistencies long before the design is implemented.

Emerging Ideas

CROSSTALK The Journal of Defense Software Engineering 27October 1998

gives system designers the ability to
“execute” the system description line by
line—identifying many potential prob-
lems long before the system is imple-
mented. Following are some of the
tasks in which Odel can assist.
• Reveal incompleteness and incon-

sistencies in the understanding of a
system that may be hidden in natu-
ral language design descriptions.

• Model a system so that you can
estimate its feasibility.

• Use operator role descriptions as a
base for writing operator manuals
and for analyzing possible operator
behavior, including erroneous be-
havior.

• Check a design for syntax and con-
sistency errors and correct them.

• Find design contradictions.
• Find undefined states in a design.
• Investigate a system’s behavior

under load without implementation
of the system, which requires tim-
ing information for actions and
capacity measurement for support-
ing hardware objects. This is best
done with simulation first.

• Find out how system behavior
depends on the operator’s actions
within the relevant part of the
operator’s behavior space.

• Create a basis to prepare tests for a
system implementation, based on
design understanding, possible
inputs, and expected outputs.

• Create Fault Trees and Failure
Mode Effects Trees for analysis of
critical systems based on actions in
Odel descriptions.

• Create a basis for definition of
simulations.

• Compare software and hardware
design descriptions with Ada 95 [1]
VHDL (VHSIC Hardware De-
scription Language [2]), and C++
(or Java) code. (This is a long-term
objective for Odel, as it requires
experience before implementation
in a tool.)

• Transform Ada 95 source code
into a design language description
(long-term objective, probably
requiring Ada Semantic Interface
Specification [3]).

• Create a formal basis for building
software tools for work with Odel
descriptions.

• Teach Odel to software developers
in a couple of hours.

• Explain Odel descriptions to end
users, with full understanding.
Descriptions of operator’s roles

and hardware are special exceptions to
the above, as they are not intended to
be developed into code except for
cases in which you want software to
model hardware or operator behavior.

Overview of Odel

Overall Structure
Figures 1-3 show the overall structure
of an Odel description. The central
element in an Odel description is the
action. The word “action” was chosen
based on an idea from Professor
Vitalis Sh Kaufman from Helsingfors,
Finland, and it does not mean any-
thing in the Ada programming lan-
guage. The “action” represents Ada’s
procedures, functions, and tasks.

Figure 1 shows how an action
contains interfaces and behavior and
how it is supported by type definitions
and by definitions of parameters, local
variables, and messages.

Administratively, actions are
grouped into the following objects
(Figure 2).
• Ordinary objects – contain a num-

ber of actions to be kept together
for design and review.

• Configuration Item object (CI
object) – encompasses the amount
of work suited for a small group
during a limited time.

• Project object – encompasses the
complete work within a develop-
ment project.

Presuppositions for Odel
A number of presuppositions were
formed as a basis for Odel:
• Any information system is consti-

tuted of one or more processes,
which can be active in parallel
(concurrently).

• Any process can be defined as an
action, which has

• An offered interface (action call).

• A behavior, defined as a se-
quence of statements, that may
include sending and receiving
messages.

• A required interface toward
other actions (optional).

• Information system actions can be
implemented as

• operator actions.
• software actions.
• hardware actions.

• Each information system aims at
fulfillment of one or more mis-
sions, with the relevant actions
defined for each mission.

• Each mission is completed through
one or more actions.

Figure 1. Overall Odel structure.

Figure 2. Action and object hierarchy.

Overcoming System Design Challenges: The Creation of a System Description Language

Figure 3. Object description.

28 CROSSTALK The Journal of Defense Software Engineering October 1998

Emerging Ideas

• Ada 95 qualifies as a formal base
for part of the definition of the
Odel language.

The Object with Its Interfaces
An ordinary Odel object is basically a
container of actions (Figure 3):

Offered action – an action that can
be invoked by an action outside the
current object. “Outside” then in-
cludes other objects in the current CI
and any object in its environment. At
least one offered action is mandatory,
as each object must have an offered
interface. Parameters are defined in
connection with actions.

Required action(s) – an action that
the current object requires from ob-
jects outside the current object to com-
plete its own actions. The required
action(s) are optional, as ”bottom-level”
objects will not have any required inter-
face. However, this entry is mandatory
for all objects that have support ob-
jects. The required action names are
qualified in action calls in two forms:
• CI_name.Object_name.Action_name (pa-

rameters), for actions defined in an
object in a foreign CI. Objects in
foreign CIs are called “attached
objects.”

• Object_name.Action_name (parameters),
for actions defined in another ob-
ject in the same CI as the current
object. Objects within the current
CI are called “contained objects.”
Internal actions – are only invoked

from other actions within the current
object.

The textual form for an object is
object current_object_name is
required actions : list of qualified names of
actions
offered action : list of names of actions in
current object with visibility = offered
internal actions : list of names of actions in
current object with visibility = internal list of
action descriptions
end current_object_name

The Odel Definition
Because Odel is based on Ada 95, it
was defined through copying and ref-
erencing the Ada 95 Language Refer-
ence Manual [1]. The main part of the
language is merely a subset of Ada 95.

In real-time systems, you some-
times need to wait for a new message
and then receive the new message.
This can be expressed with a com-
ment. Another, more formal possibil-
ity is to construct a loop and compare
received messages until a new message
is found. This possibility is, however,
not normally recommended, as the
loop may become obscure and unnec-
essarily prescribe a detailed program-
ming solution.

Tofs, the Odel-Based Tool
The Odel language was used as a foun-
dation to create a system engineering
tool, Tofs (TOol For Systems). Figure
4 shows Tofs’ main screen with a “tree
graph” window. This main screen
allows you to work with the system
structure and allows you to reach dif-
ferent parts of the Tofs toolkit.

To work with Odel, you select an
action and open an editing window.
After you have written some Odel, you
can invoke the analyzer, which will
then analyze the Odel description and
then show any error messages by high-
lighting the lines where errors were
found.

Figure 5 shows the Odel editing
window, with a message from the ana-
lyzer. Tofs further includes an “execu-

Figure 4. Tofs main screen with automobile example.

However, some extensions were
needed to describe parallel processes.
An example from the Odel definition
is shown for the “Send” and “Receive”
statements:

Send Statements
A send statement assigns a value to a
message and makes it globally readable.
send_statement ::= send message_name
(expression)

The message denoted message_name
must be declared, and the expression
must be of the type of the message.
Example:
In action header:

Messages: notification : string
In Odel description:

send notification (�OK�)

Receive Statements
A receive statement retrieves a value
from a message sent by another (or
possibly the same) action and assigns
it to a variable, an out parameter or an
in_out parameter.
receive_statement ::=
receive message_name (variable | parameter)

The message denoted message_name
must be declared. The type of the
variable or parameter must be the type
of the message. For example:
receive notification (answer).

CROSSTALK The Journal of Defense Software Engineering 29October 1998

tor” (not shown in the figures), which
is basically an Odel-level debugger,
which shows concurrent actions in
multiple windows in parallel.

Use of Odel and Tofs
With Odel and Tofs, the basic seman-
tics and parts of the syntax of Ada 95
can be applied not only to software but
also to complex concurrent systems
where operators jointly operate with
software and hardware modules to
complete missions. Odel and Tofs are
intended to support a system engineer
in tasks such as
• Analyzing a system in its environ-

ment, with clarification of how the
system communicates with and
represents its environment.

• Designing a system as a set of
objects that depend on each other
through interfaces.

• Analyzing requirements and dis-
tributing fulfillment requirements
to objects with listing of require-
ments with tracing.

• Managing problems that surface
during system development.

• Analyzing a design concerning
syntactic correctness and consis-
tency.

• Reviewing a system, using the Odel
“executor.”

• Documenting a system, according
to relevant standards, such as the
EIA/IEEE 12207.

• Reengineering code (manually) into
an Odel system description.

• Analyzing a system’s dependability,
using fault tree analysis and failure
mode affects analysis.
Although Odel descriptions look

similar to Ada code, they are not code
but are a detailed and formal descrip-
tion of a system, including its software
parts. To go from an Odel description
to code, you can copy the Odel text
into a source code editor and mark
the text as comments. The Odel de-
scription will then be a detailed speci-
fication for the code to be written (in
Ada or some other language).

Automatic generation of code has
not been attempted because I believe
that programming is professional
work, which is best done by a compe-

ing of a tactical aircraft simulator, and
others. Following are some experi-
ences from these applications.
• Some end users readily accept and

understand the formality of Odel
without additional explanation
from system developers, while the
reaction of others is “I do not read
code.”

• Using the Odel language without
an automatic analyzer requires
much tedious work for the review-
ers. Tofs eliminates much of this
type of work.

• Odel is useful when you want to
document existing software, for
example, for reengineering from
FORTRAN into Ada.

• Inclusion of “mission objects” in
the system structure helps to keep
the priorities right and to under-
stand how different parts of the
system contribute to completion of
missions.

• Inclusion of operator roles as ob-
jects in the system structure helps
in optimizing human-machine
interfaces.

Conclusion
Odel has created the ability to struc-
ture complex systems as a set of ob-

Figure 5. Odel editing window with error message.

tent programmer who understands
what is required.

Ownership, Availability, and
Experience
The Tofs toolkit was developed by the
Tofs AB company. The toolkit is avail-
able in two versions:
• A free version, with full functional-

ity but limited capacity, intended
for systems engineering education
and for evaluation. It can be down-
loaded from http://
www.toolforsystems.com

• A commercial version.
Courses in systems engineering

with Tofs are held regularly in Sweden.
Course length is three days. Some
courses have also been held in the
United States, and courses can be
arranged on request by Abelia in
Fairfax, Va. [4]. Some educational
information also is available for down-
load from http://
www.toolforsystems.com

As the work with Ada-based sys-
tems engineering has been going on
for more than 10 years, some experi-
ence has been gathered from various
projects such as automobile industrial
systems, military ship modeling (sub-
marine), development of an Army
radio communication system, structur-

Overcoming System Design Challenges: The Creation of a System Description Language

30 CROSSTALK The Journal of Defense Software Engineering October 1998

jects, connected through their offered
and required interfaces.

Experience from multiple projects
shows that work with complex systems
should be assisted by software tools,
because the complexity results in more
information than can be managed
manually. Some 10 years of experience
of Ada-based systems engineering has
been used to implement the Tofs
toolkit. The result is a comparatively
compact tool to assist systems engi-
neering tasks from requirements man-
agement to documentation.

The main objective for Odel was to
create a language that qualifies as for-
mal while being understood by both
end users and developers. This objec-
tive seems to have been reached, but

more experience is needed to attain
the full potential of the language. u

About the Author
Ingmar Ögren is president of Tofs AB in
Sweden. His systems design experience
began at the Royal University of Technol-
ogy, Electronics Division, where he partici-
pated in pioneering military aircraft simula-
tor systems. He later was active in the
development of data transmission elements
for air defense systems and the manage-
ment of a multi-industry, multiprocessor
airborne computer system. As a private
company owner, he worked on civilian
systems and helped introduce Ada to the
Swedish defense community and helped
use Ada to analyze, design, and document
systems in general. This work led to his

development of the O4S™ method used in
large systems such as submarines and air-
craft. He and his wife Anna used their O4S
experience as a foundation for Tofs.

E-mail: iog@toolforsystems.com
Internet: http://www.toolforsystems.com

References
1. Ada 95 Reference Manual, ISO/IEC

8652, 1995.
2. IEEE Standard VHDL Language Refer-

ence Manual, ANSI/IEEE STD 1076-
1993.

3. Information about ASIS is available from
the URL http://www.ci.pwr.wroc.pl/cgi-
bin/plcon/winHiso/www.acm.org/
sigada/wg/asiswg.

4. Abelia is at http://www.abelia.com.

Emerging Ideas

It’s not too early to start making plans to attend STC ’99. Judging
from past conference attendance, the sooner you act the better.
Contact us for the latest information on conference registration,
exhibits, housing, and activities in the host city. If you have never
attended—or if you want to know how this year’s event will be differ-
ent—we’ll give you an update on speakers, networking opportunities,
general sessions, tutorials, presentation tracks, and exhibitors.

The United States Air Force, Army, Navy, Marine Corps, and
the Defense Information Systems Agency have again joined forces to

co-sponsor STC ’99, the premier Software Technology Conference in
the Department of Defense. Utah State University Extension is the
conference non-federal co-sponsor. We anticipate over 3,500 partici-
pants from the services, other government agencies, contractors,
industry, and academia.

Registration for exhibit space opened Aug. 3, 1998. Reservations
for exhibit space are processed on a first-come, first-served basis, by
either mail or fax. Many exhibitors have already made reservations,
and booth space is filling fast. New exhibitors will find background
information on the Software Technology Conference, its history, and
attendance statistics helpful in planning for the conference. This
information, along with an updated exhibit hall layout, including assign-
ments and organizations registered to date, will be maintained on the
Internet. You can access this information at http://www.stc-online.org
or from our STC ’99 fax-on-demand line, 435-797-2358, item 303.

It is recommended that you make reservations for your hotel
guest room as soon as possible. For your convenience, a Housing
Reservation Form has been included in the center insert of this issue
of CROSSTALK. In addition to the housing form, a listing of the potential
hotels is available at our Web site and from our fax-on-demand line,
435-797-2358, item 200. Although this year more government- rate
rooms have been made available in the immediate vicinity of the
Convention Center, they will fill up quickly, so book early.

For more information, please visit our Web site at http://www.stc-
online.org, call the management team at 801-777-7411, DSN 777-
7411, or send an E-mail to Dana Dovenbarger or Lynne Wade at
wadel@software.hill.af.mil. We look forward to seeing you next May.

Mark Your Calendars Now for the Eleventh Annual
Software Technology Conference

May 2–6, 1999, Salt Lake City, Utah

CROSSTALK The Journal of Defense Software Engineering 31October 1998

BACKTALK

Sponsor Lt. Col. Joe Jarzombek
801-777-2435 DSN 777-2435
jarzombj@software.hill.af.mil

Publisher Reuel S. Alder
801-777-2550 DSN 777-2550
publisher@stsc1.hill.af.mil

Managing Editor Forrest Brown
801-777-9239 DSN 777-9239
managing_editor@stsc1.hill.af.mil

Senior Editor Sandi Gaskin
801-777-9722 DSN 777-9722
senior_editor@stsc1.hill.af.mil

Graphics and Design Kent Hepworth
801-775-5798
graphics@stsc1.hill.af.mil

Associate Editor Lorin J. May
801-775-5799
backtalk@stsc1.hill.af.mil

Editorial Assistant Bonnie May
801-777-8045
mayb@software.hill.af.mil

Features Coordinator Denise Sagel
801-775-4396
features@stsc1.hill.af.mil

Customer Service 801-775-4396
custserv@software.hill.af.mil

Fax 801-777-8069 DSN 777-8069

STSC On-Line http://www.stsc.hill.af.mil
CROSSTALK On-Line http://www.stsc.hill.af.mil/

Crosstalk/crostalk.html
ESIP On-Line http://www.esip.hill.af.mil

Subscriptions: Send correspondence concerning subscriptions and changes
of address to the following address:

Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205

E-mail: custserv@software.hill.af.mil
Voice: 801-775-4396
Fax: 801-777-8069 DSN 777-8069

Editorial Matters: Correspondence concerning Letters to the Editor or other
editorial matters should be sent to the same address listed above to the
attention of CROSSTALK Editor or send directly to the senior editor via the E-mail
address also listed above.

Article Submissions: We welcome articles of interest to the defense soft-
ware community. Articles must be approved by the CROSSTALK editorial board
prior to publication. Please follow the Guidelines for CROSSTALK Authors, available
upon request. We do not pay for submissions. Articles published in CROSSTALK

remain the property of the authors and may be submitted to other publications.

Reprints and Permissions: Requests for reprints must be requested from the
author or the copyright holder. Please coordinate your request with CROSSTALK.

Trademarks and Endorsements: All product names referenced in this issue
are trademarks of their companies. The mention of a product or business in
CROSSTALK does not constitute an endorsement by the Software Technology
Support Center (STSC), the Department of Defense, or any other govern-
ment agency. The opinions expressed represent the viewpoints of the authors
and are not necessarily those of the Department of Defense.

Coming Events: We often list conferences, seminars, symposiums, etc., that
are of interest to our readers. There is no fee for this service, but we must
receive the information at least 90 days before registration. Send an announce-
ment to the CROSSTALK Editorial Department.

STSC On-Line Services: STSC On-Line Services can be reached on the Inter-
net. World Wide Web access is at http://www.stsc.hill.af.mil.
The STSC maintains a Gopher server at gopher://gopher.stsc.hill.af.mil. Its ftp
site may be reached at ftp://ftp.stsc.hill.af.mil. The Lynx browser or gopher server
can also be reached using telnet at bbs.stsc.hill.af.mil or by modem at 801-774-
6509 or DSN 775-3602. Call 801-777-7989 or DSN 777-7989 for assistance, or
E-mail to schreifr@software.hill.af.mil.

Publications Available: The STSC provides various publications at no charge
to the defense software community. Fill out the Request for STSC Services
card in the center of this issue and mail or fax it to us. If the card is missing, call
Customer Service at the numbers shown above, and we will send you a form
or take your request by phone. The STSC sometimes has extra paper copies
of back issues of CROSSTALK free of charge. If you would like a copy of the
printed edition of this or another issue of CROSSTALK, or would like to subscribe,
please contact the customer service address listed above.

The Software Technology Support Center was established at Ogden Air Lo-
gistics Center (AFMC) by Headquarters U.S. Air Force to help Air Force soft-
ware organizations identify, evaluate, and adopt technologies that will improve
the quality of their software products, their efficiency in producing them, and
their ability to accurately predict the cost and schedule of their delivery. CROSSTALK

is assembled, printed, and distributed by the Defense Automated Printing Ser-
vice, Hill AFB, UT 84056. CROSSTALK is distributed without charge to individuals
actively involved in the defense software development process. Got an idea for BACKTALK? Send an E-mail to backtalk@stsc1.hill.af.mil.

The above title illustrates a point, but it is not to dump on Microsoft. A journal
for technology-savvy readers is no place to make glib, rash statements about compli-
cated technology issues. Instead, this column shows how a conspiracy by the per-
sonal computer (PC) industry is turning us into profitable zombie slaves.

I see no other reasonable explanation for why the world’s bean counters, who
usually hold their organizations’ purse strings tightly enough to asphyxiate a musk
ox—who create databases that track trends in staple usage—can blow thousands of
dollars per employee per year on new computer stuff, and they don’t seem to care
whether they’re getting a return on their investment.

Well, I’ve performed a study on our returns that should zap them back to reality.
Of course, my startling conclusions would be meaningless without good data, but
as my co-workers will testify, I am full of it. My study, which contrasts my recent
computer upgrade with my recollections of previous performance—and includes
figures I computed on a real calculator—shows how my recent upgrade robbed me
of four years productivity in the first two days alone.

Here’s the math: My old computer had plenty of RAM and storage space, and
at 200 MHz, executed most commands instantaneously. This makes sense, consid-
ering that, like many people, I only occasionally need to create real-time 3-D galactic
radiation entropy data models. For writing documents, creating simple graphics,
and doing E-mail, 200 million cycles per second was kind of overkill.

So, seeing that my machine was more than adequate, and was set up with every-
thing I needed, my organization decided to do something about it. They gave me a
300 MHz machine that has the sole advantage of providing 50 percent more overkill.
Well, maybe that’s unfair. My larger documents are now printed a full 60 seconds
before I mosey over to the printer—not just 55 seconds earlier. Also, I’m saving a
couple of seconds each time I re-boot the system, which greatly helps, since the new
computer crashes several times each day.

All told, the new computer may save up to 40 seconds per workday over the old
one. However, it took me 12 hours to get it configured the way I need it, which
means I’ll have to work on it for four and a half years to get my 12 hours back. But
that’s a moot point, because next year I’m getting an even more instantaneous com-
puter and a new operating system to learn. I’ll soon be hundreds of years behind,
but at least they’ll be paying thousands of dollars for the privilege.

Perhaps you think the practice of buying marginally useful hardware and
software upgrades is partially due to clever industry marketing and licensing prac-
tices. However, I have discovered that there is a much more reasonable explanation
for our bizarre purchasing behavior: brainwave-altering voodoo satellites.

Here’s how the satellites work: Say company X creates a word-processing up-
grade with two exciting new features: automatic paragraph formatting you don’t
want but don’t know how to undo, plus a new format no other application can
read. The company then uses these satellites to broadcast a powerful voodoo spell:
“There’s a higher version number available for product X, you technology fossils!
You must upgrade now!” A tiny, powerful zombie army then forms a line at the
software store, eager to start distributing files nobody can open.

The rest of us receive these files, get sick of asking people to resend a readable
version, and decide it’s easier to upgrade our office suites, since there’s a budget for
upgrades anyway. We then in turn share our files with others who in turn have to
get upgrades. A few months and perhaps billions of dollars later, everyone has up-
graded entire software suites in order to gain the ability to open one type of file.
Few people seem to be bothered by this, despite the fact that nobody on the planet
has intentionally used a new word-processing feature since 1992.

Therefore, my column’s title illustrates that the newest, latest technology isn’t
necessarily a step forward in terms of productivity. Imagine our joy, when the next
upgrade wave came along, if everyone just said, “Nah, maybe next time.” I doubt
we’d miss out on much. Further details are available in my full study, which is
available in a 3-D, full-motion interactive multimedia presentation (DVD-format
only). You’ll probably need an upgrade to view it. – Lorin May

Taking 3.1 Steps Forward, 98 Steps Back

